知識和技能 1.了解人類活動對生物圈影響的幾個方面的實例。 2.掌握環(huán)境污染的產(chǎn)生及危害。 3.舉例說明人類對生物圈中資源的合理利用。 過程與方法 1.能初步學會收集資料,養(yǎng)成良好的學習習慣,能夠運用所學知識、技能分析和解決一些身邊的生物學問題的能力。 2.培養(yǎng)學生初步具有近一步獲取課本以外的生物學信息的能力。 情感、態(tài)度與價值觀 1.讓學生認識到環(huán)境保護的重要性,能夠以科學的態(tài)度去認識生命世界,認同人類活動對生物圈的影響,形成環(huán)境保護意識,并使這種意識轉(zhuǎn)變成真正的行動,培養(yǎng)學生保護環(huán)境的意識,增強愛國主義思想1.認同人類活動對生物圈的影響,形成環(huán)境保護意識 2.做到從實際行動出發(fā)保護環(huán)境1.采取讓學生收集資料,整理資料,解疑
二、互動交流,理解算法1.出示教科書第22頁的情境圖,提問:他們在干什么?你獲得了什么信息?能提出什么問題?怎樣列式?2.師:今天我們就學習一位數(shù)除三位數(shù)的計算方法。(板書課題:一位數(shù)除三位數(shù))3.師:怎樣計算238÷6呢?你能用估算的方法估計出大致結(jié)果嗎?4.學生嘗試獨立完成例3的豎式計算。師:在這道題中被除數(shù)最高位上是2個百,2個百除以6,商不夠1個百怎么辦?師:誰能說一說商3個十的3寫在商的什么位置上?為什么?教師邊板演邊說明:用除數(shù)6去乘3個十,積是18個十,表示被除數(shù)中已經(jīng)分掉的數(shù),寫在23的下面。23減18得5,表示十位上還剩5個十。師:接下來該怎么辦?(把被除數(shù)個位上的8落下來,與十位上的5合起來繼續(xù)除。)師:最后結(jié)果是多少?5.啟發(fā)學生想一想:如果一本相冊有24頁,一本相冊能插得下這些照片嗎?2本呢?
一.說教材我今天說課的內(nèi)容是義務教育課程標準北師大版七年級下冊第四單元第二節(jié)的《用關(guān)系式表示的變量間關(guān)系》。在上節(jié)課的學習中學生已通過分析表格中的數(shù)據(jù),感受到變量之間的相依關(guān)系,并用自己的語言加以描述,初步具有了有條理的思考和表達的能力,為本節(jié)的深入學習奠定了基礎。二.說教學目標本節(jié)課根據(jù)新的教學理念和學生需要掌握的知識,確立本節(jié)課的三種教學目標:知識與能力目標:根據(jù)具體情況,能用適當?shù)暮瘮?shù)表示方法刻畫簡單實際問題中變量之間的關(guān)系,能確定簡單實際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標:經(jīng)歷探索某些圖形中變量之間的關(guān)系的過程,進一步體會一個變量對另一個變量的影響,發(fā)展符號感。情感態(tài)度與價值觀目標:通過研究,學習培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關(guān)系的表達,培養(yǎng)數(shù)學建模能力,增強應用意識。
提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導入新課: 如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。
一、教材分析 1、教材內(nèi)容及所處地位綜合實踐活動是在新一輪基礎教育課程改革中應運而生的新型課程。所謂綜合實踐活動,主要指以學生的興趣和直接經(jīng)驗為基礎,以與學生學習生活和社會生活密切相關(guān)的各類現(xiàn)實性、綜合性、實踐性問題為內(nèi)容,以研究性學習為主導學習方式,以培養(yǎng)學生的創(chuàng)新精神、實踐能力及體現(xiàn)對知識的綜合運用為主要目的一類新型課程。具有以下特點: 1、基于興趣與直接經(jīng)驗。2、回歸生活世界。3、立足實踐。4、著眼創(chuàng)新。5、以研究性學習為主導學習方式:(1)以轉(zhuǎn)變學生的學習方式為出發(fā)點。(2)強調(diào)知識的聯(lián)系和綜合運用。(3)注重過程。(4)強調(diào)開放。(5)重視師生互動。四年級下冊綜合實踐活動課程要培養(yǎng)學生對生活、學習的積極態(tài)度,使他們具備一定的交往合作能力、觀察分析能力、動手操作能力;要讓他們初步掌握參與社會實踐的方法,信息資料的搜集、分析和處理問題的方法以及研究探索的方法;使學生形成合作、分享、積極進取等良好的個性品質(zhì),成為創(chuàng)新生活的小主人。2、單元內(nèi)容分析本教材包括?方法與指導?和?活動與探究?兩部分內(nèi)容, ?方法與探究? 主要是讓學生掌握如何進行采訪,通過一系列活動,掌握采訪的準備、注意事項、具體實施,及最后的交流總結(jié),培養(yǎng)學生交往能力。 ?活動與探究?包括六個主題,主題一我們身邊的標志,通過讓學生認識標志,體會含義。學會分類,最后學會制作標志,循序漸進,蘊含了創(chuàng)新、守規(guī)、審美等能力的培養(yǎng);主題二早餐與健康通過談論,調(diào)查、分析討論培養(yǎng)學生交流總結(jié)能力,樹立健康生活意識;主題三,有趣的絲網(wǎng)花,通過制作培養(yǎng)學生合作、審美、動手能力;主題四巧手做風箏繼續(xù)對學生進行培養(yǎng);主題五植物的扦插與嫁接,與現(xiàn)實生活聯(lián)系密切,通過活動掌握方法,體驗快樂,體驗勞動的樂趣;主題六爭做小小志愿者,通過了解體驗志愿者的活動,豐富閱歷,培養(yǎng)學生的服務意識,自身獲得提升與發(fā)展。教材的重點、難點:重點:學會交流,提升能力;認識各種標志,學會制作;學會健康的生活;通過制作絲網(wǎng)花、風箏、植物的扦插于嫁接,學會制作,提高動手能力,通過體驗小小志愿者,提高服務意識。難點:教學中讓學生親身參與、主動實踐,在實踐中綜合運用所學知識解決各種實際問題,提高解決實際問題的能力。學習基礎:四年級學生已具備了一定的實踐能力,因此要逐步培養(yǎng)學生一些探究問題的方法,提高學生的動手意識,能夠從生活和學習中挖掘自己感興趣的活動主題,能夠試著和同學展開小組合作學習,在有效的活動中不斷提高學生的動手與創(chuàng)新的潛能。
一、游戲活動激趣,認識對稱物體1、游戲“猜一猜”:課件依次出示“剪刀、掃帚、飛機、梳子”的一部分,分男、女生猜。2、認識對稱物體:1)師質(zhì)疑:為什么女生猜得又快又準呢?2)小結(jié):像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱物體。(板書:對稱)二、猜想驗證新知,認識軸對稱圖形(一)初步感知對稱圖形1、將“剪刀、飛機、扇子”等對稱物體抽象出平面圖形,讓學生觀察,這些平面圖形還是不是對稱的。2、師小結(jié):像這樣的圖形,叫做對稱圖形。(板書:圖形)(二)猜想驗證對稱圖形1、猜一猜:出示“梯形、平行四邊形、圓形、燕尾箭頭”等平面圖形,讓學生觀察。師:這些平面圖形是不是對稱圖形?怎樣證明它們是不是對稱圖形?
問題情景,導入新課1、多媒體課件出示例1主題圖,問:圖上的小朋友在干什么?你們測量過體重嗎?測量了幾次?讀一年級剛?cè)雽W時,你測量的體重是多少?(學生自由匯報各自的體重情況)怎樣才能讓大家一看就明白我們班所有人的體重情況呢?二、活動體驗,探究新知1、電腦出示統(tǒng)計表(1): 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 師:現(xiàn)在我們就用“正”字記錄法來統(tǒng)計一下剛?cè)雽W時的體重(集體活動)2、活動結(jié)束后,師生共同將收集的數(shù)據(jù)整理后填入表格中。3、二年級時,我們的體重有什么變化呢? 電腦出示統(tǒng)計表(2) 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 集體進行統(tǒng)計活動,并將結(jié)果填入表中。4、討論:如果想把兩年的體重數(shù)據(jù)填入一個統(tǒng)計表中,該如何表示呢? 學生討論后,在黑板上出示表格(3):(單位:千克)
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運算進行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計算代數(shù)式.三、板書設計1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運用冪的乘方公式的探究方式和前節(jié)類似,因此在教學中可以利用該優(yōu)勢展開教學,在探究過程中可以進一步發(fā)揮學生的主動性,盡可能地讓學生在已有知識的基礎上,通過自主探究,獲得冪的乘方運算的感性認識,進而理解運算法則
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系
解析:橫軸表示時間,縱軸表示溫度.溫度最高應找到圖象的最高點所對應的x值,即15時,A對;溫度最低應找到圖象的最低點所對應的x值,即3時,B對;這天最高溫度與最低溫度的差應讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結(jié):認真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點確定自變量及因變量的對應值.三、板書設計1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點,但是它也存在感性觀察不夠準確,畫面局限性大的缺點.教學中讓學生自己歸納總結(jié),回顧反思,將知識點串連起來,完成對該部分內(nèi)容的完整認識和意義建構(gòu).這對學生在實際情境中根據(jù)不同需要選擇恰當?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解析:根據(jù)“全等三角形的對應角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、板書設計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對應角、對應線段相等.首先展示全等形的圖片,激發(fā)學生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過練習來理解全等三角形的性質(zhì)并滲透符號語言推理.通過實例熟悉運用全等三角形的性質(zhì)解決一些簡單的實際問題
方法總結(jié):判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結(jié):動手操作或結(jié)合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結(jié)論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向?qū)W生質(zhì)疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
解1:設該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書設計1.角平分線的性質(zhì)定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應用教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結(jié)論.若能導出合理的結(jié)果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。