提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

部編人教版一年級(jí)下冊(cè)《小猴子下山》說課稿

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)三角形的三邊關(guān)系教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)三角形的三邊關(guān)系教案

    方法總結(jié):絕對(duì)值的化簡首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡.三、板書設(shè)計(jì)1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問題的過程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)用表格表示的變量間關(guān)系教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)用表格表示的變量間關(guān)系教案

    解:(1)電動(dòng)車的月產(chǎn)量y為隨著時(shí)間x的變化而變化,有一個(gè)時(shí)間x就有唯一一個(gè)y與之對(duì)應(yīng),月產(chǎn)量y是時(shí)間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實(shí)現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢(shì),實(shí)質(zhì)是觀察自變量增大時(shí),因變量是隨之增大還是減小.三、板書設(shè)計(jì)1.常量與變量:在一個(gè)變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個(gè)重要的量,對(duì)于我們所熟悉的變化,在用了這兩個(gè)量的描述之后更加鮮明.本節(jié)是學(xué)好本章的基礎(chǔ),教學(xué)中立足于學(xué)生的認(rèn)知基礎(chǔ),激發(fā)學(xué)生的認(rèn)知沖突,提升學(xué)生的認(rèn)知水平,使學(xué)生在原有的知識(shí)基礎(chǔ)上迅速遷移到新知上來

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)線段垂直平分線的性質(zhì)教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)線段垂直平分線的性質(zhì)教案

    解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)與摸球相關(guān)的等可能事件的概率教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)與摸球相關(guān)的等可能事件的概率教案

    1.進(jìn)一步理解概率的意義并掌握計(jì)算事件發(fā)生概率的方法;(重點(diǎn))2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點(diǎn))一、情境導(dǎo)入一個(gè)箱子中放有紅、黃、黑三個(gè)小球,三個(gè)人先后去摸球,一人摸一次,一次摸出一個(gè)小球,摸出后放回,摸出黑色小球?yàn)橼A,那么這個(gè)游戲是否公平?二、合作探究探究點(diǎn)一:與摸球有關(guān)的等可能事件的概率【類型一】 摸球問題一個(gè)不透明的盒子中放有4個(gè)白色乒乓球和2個(gè)黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機(jī)摸出1個(gè)乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個(gè)乒乓球,其中2個(gè)黃色的,任意摸出1個(gè),則P(摸到黃色乒乓球)=26=13.故選C.方法總結(jié):概率的求法關(guān)鍵是找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識(shí)相關(guān)的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機(jī)取的一個(gè)數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)分式方程的概念及列分式方程教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)分式方程的概念及列分式方程教案

    探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過參與學(xué)習(xí)的過程,讓學(xué)生感受知識(shí)的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺性,體驗(yàn)類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)分式方程的解法教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)分式方程的解法教案

    【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時(shí),此方程無解,此時(shí)m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時(shí),代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時(shí),代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對(duì)使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會(huì)產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)直接提公因式因式分解教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)直接提公因式因式分解教案

    解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)三角形的全等和等腰三角形的性質(zhì)教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)三角形的全等和等腰三角形的性質(zhì)教案

    證明:過點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時(shí),先必須已知一個(gè)條件,這個(gè)條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時(shí),一般要用到其中的兩條線互相重合.三、板書設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對(duì)等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個(gè)條件,就能得出另外的兩個(gè)結(jié)論.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)線段的垂直平分線教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)線段的垂直平分線教案

    ∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)旋轉(zhuǎn)的定義和性質(zhì)教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)旋轉(zhuǎn)的定義和性質(zhì)教案

    (3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用2教案

    教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過程,進(jìn)一步體會(huì)三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計(jì)算器進(jìn)行有關(guān)三角函數(shù)的計(jì)算,并能對(duì)結(jié)果的意義進(jìn)行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和解決問題的能力.(三)情感與價(jià)值觀要求1.在經(jīng)歷弄清實(shí)際問題題意的過程中,畫出示意圖,培養(yǎng)獨(dú)立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動(dòng),提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過程,進(jìn)一步體會(huì)三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識(shí)和解決問題的能力.教學(xué)難點(diǎn)根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形2教案

    首先請(qǐng)學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來解.教師可請(qǐng)一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評(píng)價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過數(shù)值計(jì)算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)利用三角函數(shù)測(cè)高2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)利用三角函數(shù)測(cè)高2教案

    問題2、如何用測(cè)角儀測(cè)量一個(gè)低處物體的俯角呢?和測(cè)量仰角的步驟是一樣的,只不過測(cè)量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對(duì)準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測(cè)量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測(cè)得測(cè)點(diǎn)與被測(cè)物體底部之間的距離.要測(cè)旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測(cè)點(diǎn)A處安置測(cè)傾器(即測(cè)角儀),測(cè)得M的仰角∠MCE=α.2.量出測(cè)點(diǎn)A到物體底部N的水平距離AN=l.3.量出測(cè)傾器(即測(cè)角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測(cè)量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    如圖,課外數(shù)學(xué)小組要測(cè)量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們?cè)贏處測(cè)得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請(qǐng)你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值2教案

    ③設(shè)每件襯衣降價(jià)x元,獲得的利潤為y元,則定價(jià)為 元 ,每件利潤為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測(cè) ☆ 1、用長為6m的鐵絲做成一個(gè)邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場(chǎng)調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    如圖所示,要用長20m的鐵欄桿,圍成一個(gè)一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓周角和圓心角的關(guān)系教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓周角和圓心角的關(guān)系教案

    解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來則相對(duì)困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問題的過程中往往會(huì)忽略同弧的問題,在教學(xué)過程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.

  • 部編人教版六年級(jí)上冊(cè)《盼》說課稿(一)

    部編人教版六年級(jí)上冊(cè)《盼》說課稿(一)

    【教材分析】《盼》是六年級(jí)第五單元的一篇課文。本文選自作家鐵凝的第一本出版小說《夜路》,是一篇兒童文學(xué)類的小說。作者以孩子的視角,記述了得到新雨衣,渴望下雨到愿望實(shí)現(xiàn)——在雨中穿上了新雨衣的故事。用細(xì)膩的語言描述了小主人公情感和心理的變化,表現(xiàn)了童真童趣?!窘虒W(xué)目標(biāo)】1.疏通重難點(diǎn)字詞的讀音和寫法。2.整體感知課文內(nèi)容,把握故事情節(jié),理清行文思路,感受小主人公因新雨衣而產(chǎn)生的“盼”。3.通過捕捉環(huán)境描寫、人物的語言、動(dòng)作、神態(tài)、對(duì)話等描寫,來感受小主人公情感的變化?!窘虒W(xué)重難點(diǎn)】通過捕捉環(huán)境描寫、人物的語言、動(dòng)作、神態(tài)、對(duì)話等描寫,來感受小主人公情感的變化?!窘虒W(xué)過程】核心問題:作者如何圍繞一個(gè)“盼”字展開描寫,表現(xiàn)小主人公的情感變化?

上一頁123...707172737475767778798081下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!