1.我寫散文,是摟草打兔子——捎帶腳。不過我以為寫任何形式的文字,都得首先把散文寫好。2.我是希望把散文寫得平淡一點,自然一點,家常一點的。3.我想把生活中真實的東西、美好的東西、人的美、人的詩意告訴人們,使人們的心靈得到滋潤,增強對生活的信心、信念。4.我希望我的作品能有益于世道人心,我希望使人的感情得到滋潤,讓人覺得生活是美好的,人是美的,有詩意的。你很辛苦,很累了,那么坐下來歇一會,喝一杯不涼不燙的清茶,讀一點我的作品。5.使用語言,譬如揉面。面要揉到了,才軟熟,筋道,有勁兒。水和面粉本來是兩不相干的,多揉揉,水和面的分子就發(fā)生了變化。寫作也是這樣,下筆之前,要把語言在手里反復(fù)團弄。疑難突破深度體會《昆明的雨》中情之絢爛有些描寫不合常情。比如“我不記得昆明的雨季有多長,從幾月到幾月,好像是相當長的。但是并不使人厭煩”,從常理看,長長的雨季是會讓人感到憋悶不舒適的,而作者卻覺得“并不使人厭煩”。由此,可體會“我”對昆明雨季的一份特別的愛。
此外,多種形式的朗讀,為學(xué)生在朗讀中理解字詞、內(nèi)容、情感打下了基礎(chǔ)。素養(yǎng)提升《三峽》中的修辭手法1.并提為了使句子緊湊、文筆簡練,古人常用并提法行文,把本來應(yīng)該寫成兩個短語或兩個句子的話,合并為形式上的一個短語或一個句子,把相同的語句成分放在一起并提,但表意上仍然必須按照兩個短語或句子的組合關(guān)系來分別相承,這種修辭手法就叫并提。這種句子翻譯時應(yīng)分為兩句。如:(1)“自非亭午夜分,不見曦月。”“亭午”“夜分”是兩個不并存的時間,“曦”和“月”是兩種不同的自然現(xiàn)象,合起來是講不通的,這句話應(yīng)理解為“自非亭午,不見曦;自非夜分,不見月”(如果不是在正午,就看不到太陽;如果不是在半夜,就看不到月亮)。(2)“素湍綠潭,回清倒影。”這句和上句一樣,應(yīng)理解為“素湍回清,綠潭倒影”(白色的急流中有回旋的清波,綠色的潭水中有倒映著的各種景物的影子)。
1.南方園林江南有溫和的氣候、充沛的水量、豐盛的物產(chǎn)、優(yōu)美的景色、寬松的人文環(huán)境,其園林營建必然自呈特色?!吨袊蟀倏迫珪?#183;江南園林》將其總結(jié)為三點:第一,疊石理水、水石相映。太湖石奇特多姿,在庭中造型尤佳。最稱絕的是蘇州瑞云峰、杭州植物園縐云峰、上海豫園玉玲瓏。第二,花木種類多。第三,建筑風(fēng)格淡雅、樸素。布局自由,結(jié)構(gòu)不拘定式,清新灑脫,小巧細膩,幽雅美麗。小閣臨流,冷色多,像山水畫。青瓦素墻,褐色門窗,官僚政治意識淡薄,書卷氣深濃。南方園林以江南園林為代表。江南園林主要指以蘇州、杭州、無錫、揚州、南京、上海、常熟等城市為主的私家園林。江南園林屬于文人寫意派山水園,文人畫家參與造園,以人工造景為主,規(guī)劃巧妙,設(shè)計精致,人文氣氛濃。造園師在有限的空間再現(xiàn)真實的自然山水,以小見大,意蘊無窮。
(生交流討論以下問題,師小結(jié))設(shè)問1:本詩是圍繞哪兩個字來寫的?詩人的行蹤是怎樣的?預(yù)設(shè) 圍繞“春”“行”來寫的。詩人行蹤:孤山寺北—賈亭西—湖東—白沙堤。設(shè)問2:頷聯(lián)中的“幾處”“誰家”能不能換成“處處”“家家”,為什么?預(yù)設(shè) 不能。因為早鶯尚少,只有“幾處”;新燕不多,不知“誰家”?!皫滋帯焙汀罢l家”突出了初春事物都還很稀少。如果換成“處處”和“家家”,就體現(xiàn)不出早春的特點了。設(shè)問3:頷聯(lián)中的“爭”和“啄”兩個動詞用得好,請說說好在哪里。預(yù)設(shè) 這兩個動詞惟妙惟肖地描摹了鶯燕的動態(tài),傳神地描繪了一幅充滿生機的早春圖,流露出詩人對如此美景的無限喜愛之情。設(shè)問4:尾聯(lián)抒發(fā)了作者什么樣的感情?預(yù)設(shè) “最愛湖東行不足”,說明詩人流連忘返,陶醉在美好的湖光山色中了。體現(xiàn)了作者對早春西湖美景的喜愛和贊美之情。
陰陽原是指日光的向背,向日為陽,背日為陰。我國古代地名中的“陰”和“陽”實際上是一種方位指示,“日之所照曰陽”,也就是說太陽所能照到的地方就稱為陽。 山水陰陽是說古代以山南、水北為陽,以山北、水南為陰。 形成這種局面的原因是山峰高聳,日光能照射到的地方是山的南面;而河流位于地平面以下,所以太陽能照射到的地方其實是河流的北面。 故有“山南水北謂之陽,山北水南謂之陰”的說法。在我國歷史上,很多地名及地理表述都與此關(guān)系密切,如江陰、衡陽、漢陽等。 《愚公移山》 中說:“指通豫南,達于漢陰。” 其中的“漢陰”是指漢水的南岸。 “泰山之陽,汶水西流;其陰,濟水東流”(姚鼐《登泰山記》)、“所謂華山洞(南宋王象之《輿地紀勝》寫為‘華陽洞’。 看正文下句,應(yīng)為‘華陽洞’)者,以其乃華山之陽名之也”
吳均是一位善寫山水的大家,他自小好學(xué)而又才智出眾,但“家世寒賤”,性格耿直。在門閥制度相當嚴格的南朝梁,出身于庶族寒門的人,想要在政治上得到重用,著實不易,再加上他性格直來直去,口無遮攔,更是會四處碰壁。所幸的是,起先著名文史學(xué)家沈約看中了吳均的文章,“頗相稱賞”。接著,吳均得到了刺史柳惲的賞識,提拔他當了郡主簿,常在一起賦詩答對。他的詩文“清拔有古氣”,自成一家,時人紛紛效仿,稱為“吳均體”。書信內(nèi)容為何是山水游記魏晉六朝是中國歷史上政治最混亂、社會最痛苦的時代,然而卻是精神上極自由、極富智慧和藝術(shù)精神的時代。大自然成了情趣高雅之士審美活動的重要背景和舞臺,移情山水成了當時的社會風(fēng)尚。在書信中描畫山水,寄托情志,成為好友間交流的一種流行方式,文人們通過書信內(nèi)斂地表露自己的人生取向,他們的文學(xué)經(jīng)歷給后世留下了寶貴的文化遺產(chǎn)。吳均的《與朱元思書》《與施從事書》和《與顧章書》,以及陶弘景的《答謝中書書》皆是如此。
中國的拱橋的歷史可追溯到東漢時期,至今已有一千八百多年。中國的拱橋別具一格,造型優(yōu)美,曲線圓潤,形式多樣,世界罕見。拱橋按照建筑材料分為石拱橋、磚拱橋和木拱橋,其中較為常見的是石拱橋。拱橋又分為單拱、雙拱、多拱,拱的多少根據(jù)河面的寬度而定。多拱橋一般正中間的拱較大,兩邊的拱略小。根據(jù)拱的形狀,又分五邊、半圓、尖拱、坦拱。橋面上鋪板,橋邊有欄桿。單孔拱橋的拱形呈拋物線的形狀,如北京頤和園的漢白玉石橋玉帶橋。多孔拱橋適于跨度較大的寬廣水面,常見的多為三、五、七孔,以奇數(shù)為多,偶數(shù)較少。當多孔拱橋某個孔的主拱受荷時,能通過橋墩的變形或拱上結(jié)構(gòu)的作用把荷載由近及遠地傳遞到其他孔主拱上去,這樣的拱橋稱為連續(xù)拱橋,簡稱“聯(lián)拱”。如建于唐代元和年間的古橋蘇州寶帶橋,橋下共有53個孔相連,橋孔之多,結(jié)構(gòu)之精巧,為中外建橋史上所罕見。
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應(yīng)為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
(1)請估計:當n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設(shè)黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設(shè)計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時,同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設(shè)計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓(xùn)練學(xué)生的運用能力,增強學(xué)生對知識的應(yīng)用意識.
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應(yīng)邊.三、板書設(shè)計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵學(xué)生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識.
(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設(shè)黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設(shè)計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應(yīng)的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設(shè)計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學(xué)生體會到三視圖中位置及各部分之間大小的對應(yīng)關(guān)系.通過具體活動,積累學(xué)生的觀察、想象物體投影的經(jīng)驗,發(fā)展學(xué)生的動手實踐能力、數(shù)學(xué)思考能力和空間觀念.
解:方法一:因為DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因為DF∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因為DE∥BC,所以∠ADE=∠B.又因為DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長,常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個三角形就成了解題的關(guān)鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設(shè)計(1)相似三角形的定義:三角分別相等、三邊成比例的兩個三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動手探究、歸納總結(jié)的能力.
同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個圖形中的三角形均為格點三角形,可以根據(jù)勾股定理求出各邊的長,然后根據(jù)三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應(yīng)邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設(shè)計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學(xué)生已學(xué)的知識入手,通過設(shè)置問題,引導(dǎo)學(xué)生進行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì).
證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時,如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實以及推論得到相關(guān)比例式.如果圖中沒有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實及其推論得到相關(guān)比例式.三、板書設(shè)計平行線分線段成比例基本事實:兩條直線被一組平行線所截, 所得的對應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應(yīng)線段成比例通過教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個復(fù)雜的圖形分成幾個基本圖形,通過應(yīng)用鍛煉識圖能力和推理論證能力.在探索過程中,積累數(shù)學(xué)活動的經(jīng)驗,體驗探索結(jié)論的方法和過程,發(fā)展學(xué)生的合情推理能力和有條理的說理表達能力.