提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版初中數學九年級上冊生日相同的概率說課稿

  • 北師大版初中數學九年級上冊生日相同的概率說課稿

    北師大版初中數學九年級上冊生日相同的概率說課稿

    Ⅵ.活動與探究某種“15選5”的彩票的獲獎號碼是從1~15這15個數字小選擇5個數字(可以重復),若彩民所選擇的5個數字恰與獲獎號碼相同,即可獲得特等獎.小明觀察了最近100期獲獎號碼,發(fā)現其中竟有51期有重號(同一期獲獎號碼有2個或2個以上的數字相同),66期有連號(同一期獲獎號碼中有2個或2個以上的數字相鄰).他認為獲獎號碼不應該有這么多重號和連號,獲獎號碼可能不是隨機產生的,有失公允.小明的觀點有道理嗎?重號的概率大約是多少?利用計算器模擬實驗可以估計重號的概率.[過程]兩人組成一個小組,利用計算器產生1~15之間的隨機數.并記錄下來,每產生5個隨機數為一次實驗,每組做10次實驗,看看有幾次重號和連號.將全班的數據匯總集中起來,就可估計出1~15之間的整數中隨機抽出5個數出現重號和連號的概率.

  • 北師大初中數學九年級上冊概率與游戲的綜合運用2教案

    北師大初中數學九年級上冊概率與游戲的綜合運用2教案

    三、典型例題,應用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結果,每種結果出現的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉盤做“配紫色”游戲,每個轉盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設計兩個轉盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結,回顧新知1. 利用樹狀圖和列表法求概率時應注意什么?2. 你還有哪些收獲和疑惑?

  • 北師大初中數學九年級上冊用頻率估計概率2教案

    北師大初中數學九年級上冊用頻率估計概率2教案

    (4)議一議:頻率與概率有什么區(qū)別和聯系?隨著重復實驗次數的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農場里出生了1頭白色的小奶牛,據統計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?

  • 北師大初中數學九年級上冊用頻率估計概率1教案

    北師大初中數學九年級上冊用頻率估計概率1教案

    (1)請估計:當n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數增多時,摸到白球的頻率mn將會接近一個數值,則可把這個數值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數較大時實驗頻率穩(wěn)定于理論頻率,并據此估計某一事件發(fā)生的概率.經歷實驗、統計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數據的技能,提高數學交流水平,發(fā)展探索、合作的精神.

  • 北師大初中數學九年級上冊用頻率估計概率1教案

    北師大初中數學九年級上冊用頻率估計概率1教案

    (2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數增多時,摸到白球的頻率mn將會接近一個數值,則可把這個數值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數較大時實驗頻率穩(wěn)定于理論頻率,并據此估計某一事件發(fā)生的概率.經歷實驗、統計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數據的技能,提高數學交流水平,發(fā)展探索、合作的精神.

  • 北師大初中數學九年級上冊用頻率估計概率2教案

    北師大初中數學九年級上冊用頻率估計概率2教案

    (1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調換,至少應該進多少件西裝?六、課堂小結:盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現的頻率就會隨著實驗次數的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數的前提下,小亮為估計口袋中黑球的個數,采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據上述數據,小亮可估計口袋中大約有 48 個黑球。

  • 北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現實生活相聯系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

  • 北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現實生活相聯系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

  • 北師大初中七年級數學下冊與面積相關的等可能事件的概率教案

    北師大初中七年級數學下冊與面積相關的等可能事件的概率教案

    方法總結:當某一事件A發(fā)生的可能性大小與相關圖形的面積大小有關時,概率的計算方法是事件A所有可能結果所組成的圖形的面積與所有可能結果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關鍵是要找準兩點:(1)全部情況的總數;(2)符合條件的情況數目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關的概率的應用如圖,把一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉動轉盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設計1.與面積有關的等可能事件的概率P(A)= 2.與面積有關的概率的應用本課時所學習的內容多與實際相結合,因此教學過程中要引導學生展開豐富的聯想,在日常生活中發(fā)現問題,并進行合理的整合歸納,選擇適宜的數學方法來解決問題

  • 北師大初中七年級數學下冊與摸球相關的等可能事件的概率教案

    北師大初中七年級數學下冊與摸球相關的等可能事件的概率教案

    1.進一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點)2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點)一、情境導入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球為贏,那么這個游戲是否公平?二、合作探究探究點一:與摸球有關的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結:概率的求法關鍵是找準兩點:①全部情況的總數;②符合條件的情況數目.二者的比值就是其發(fā)生的概率.【類型二】 與代數知識相關的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機取的一個數,則m4>100的概率為()A.15 B.310 C.12 D.35

  • 北師大初中數學九年級上冊比例的性質2教案

    北師大初中數學九年級上冊比例的性質2教案

    請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質:猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導學生從上述實例中找出證明方法)等比性質:如果 ( ),那么 = .思考:等比性質中,為什么要 這個條件?三、 鞏固練習:1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結:1.比例的基本性質:a:b=c:d ;2. 合比性質:如果 ,那么 ;3. 等比性質:如果 ( ),五、 布置作業(yè):課本習題4.2

  • 北師大初中數學九年級上冊菱形的判定1教案

    北師大初中數學九年級上冊菱形的判定1教案

    (1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  • 北師大初中數學九年級上冊矩形的性質1教案

    北師大初中數學九年級上冊矩形的性質1教案

    解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結:矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設計矩形矩形的定義:有一個角是直角的平行四邊形    叫做矩形矩形的性質四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經歷矩形的概念和性質的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.

  • 北師大初中數學九年級上冊比例的性質1教案

    北師大初中數學九年級上冊比例的性質1教案

    若a,b,c都是不等于零的數,且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質基本性質:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質:如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab經歷比例的性質的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數學與生活的緊密聯系,體會數學的思維方式,增強學習數學的興趣.

  • 北師大初中數學九年級上冊矩形的判定2教案

    北師大初中數學九年級上冊矩形的判定2教案

    2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)

  • 北師大初中數學九年級上冊矩形的判定1教案

    北師大初中數學九年級上冊矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.

  • 北師大初中數學九年級上冊菱形的性質2教案

    北師大初中數學九年級上冊菱形的性質2教案

    1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積

  • 北師大初中數學九年級上冊菱形的判定2教案

    北師大初中數學九年級上冊菱形的判定2教案

    方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形

  • 北師大初中數學九年級上冊相似多邊形2教案

    北師大初中數學九年級上冊相似多邊形2教案

    (2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質,正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數學結論的能力;(2)學生對于相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4

  • 北師大初中數學九年級上冊相似多邊形1教案

    北師大初中數學九年級上冊相似多邊形1教案

    (2)如果對應著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據兩矩形的對應邊是否成比例來判斷兩矩形是否相似;(2)根據矩形相似的條件列出等量關系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設兩個矩形相似,不妨設小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結:因為矩形的四個角均是直角,所以在有關矩形相似的問題中,只需看對應邊是否成比例,若成比例,則相似,否則不相似.

12345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!