提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大版初中數(shù)學(xué)九年級上冊生日相同的概率說課稿

  • 北師大初中九年級數(shù)學(xué)下冊正弦與余弦1教案

    北師大初中九年級數(shù)學(xué)下冊正弦與余弦1教案

    解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.

  • 北師大初中九年級數(shù)學(xué)下冊正切與坡度1教案

    北師大初中九年級數(shù)學(xué)下冊正切與坡度1教案

    已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

  • 北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    (3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級數(shù)學(xué)下冊圓教案

    北師大初中九年級數(shù)學(xué)下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

  • 北師大初中九年級數(shù)學(xué)下冊正弦與余弦2教案

    北師大初中九年級數(shù)學(xué)下冊正弦與余弦2教案

    [教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.

  • 北師大初中九年級數(shù)學(xué)下冊正切與坡度2教案

    北師大初中九年級數(shù)學(xué)下冊正切與坡度2教案

    教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

  • 北師大初中數(shù)學(xué)七年級上冊科學(xué)記數(shù)法說課稿

    北師大初中數(shù)學(xué)七年級上冊科學(xué)記數(shù)法說課稿

    [設(shè)計說明]:只給出情景故事,感知了一個大數(shù),這樣還不能引起學(xué)生對大數(shù)的深刻認(rèn)識,所以再給出宇宙星空中的這些大數(shù),讓學(xué)生讀讀、看看這些數(shù),引起學(xué)生強烈的認(rèn)知上的沖突,形成一種心理上的想讀、想寫的求知欲望。(二)、引出問題、探索新知在上面的例子中,我們遇到了幾個很大的數(shù),看起來、讀起來、寫起來都不方便,有沒有簡單的表示法呢?分以下步驟完成。1、回憶100 ,1000,10000,能寫成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由學(xué)生完成上面4個例子中的數(shù)的表示。(學(xué)生對160 000 000 000這個數(shù)可能表示為、16×1010,教師要利用學(xué)生這種錯誤,強調(diào)a的范圍)4、教師給出科學(xué)記數(shù)法表示:a×10( )(1≤a<10)。[設(shè)計說明]:通過層層遞進(jìn)的探究設(shè)計,啟發(fā)學(xué)生成功地發(fā)現(xiàn)“科學(xué)記數(shù)法”的表示方法,同時又通過學(xué)生示錯,讓學(xué)生記住a的范圍,體現(xiàn)了以學(xué)生為主的探究式教學(xué)。

  • 北師大初中數(shù)學(xué)七年級上冊數(shù)軸說課稿

    北師大初中數(shù)學(xué)七年級上冊數(shù)軸說課稿

    (五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學(xué)重點讓學(xué)生獨立完成: 1、課本23頁練習(xí)1、2 2、課本23頁3題的(給全體學(xué)生以示范性讓一個同學(xué)板書) 為向?qū)W生進(jìn)一步滲透數(shù)形結(jié)合的思想讓學(xué)生討論: 3、數(shù)軸上的點P與表示有理數(shù)3的點A距離是2, (1)試確定點P表示的有理數(shù); (2)將A向右移動2個單位到B點,點B表示的有理數(shù)是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數(shù)是多少? 先讓學(xué)生通過小組討論得出結(jié)果,通過以上練習(xí)使學(xué)生在掌握知識的基礎(chǔ)上達(dá)到靈活運用,形成一定的能力。 (六)、歸納小結(jié),強化思想: 根據(jù)學(xué)生的特點,師生共同小結(jié): 1、為了鞏固本節(jié)課的教學(xué)重點提問:你知道什么是數(shù)軸嗎?你會畫數(shù)軸嗎?這節(jié)課你學(xué)會了用什么來表示有理數(shù)? 2、數(shù)軸上,會不會有兩個點表示同一個有理數(shù)?會不會有一個點表示兩個不同的有理數(shù)? 讓學(xué)生牢固掌握一個有理數(shù)只對應(yīng)數(shù)軸上的一個點,并能說出數(shù)軸上已知點所表示的有理數(shù)。

  • 北師大初中數(shù)學(xué)七年級上冊有理數(shù)說課稿

    北師大初中數(shù)學(xué)七年級上冊有理數(shù)說課稿

    1、 教材的地位和作用本課教材所處位置,是小學(xué)所學(xué)算術(shù)數(shù)之后數(shù)的范圍的第一次擴充,是算術(shù)數(shù)到有理數(shù)的銜接與過渡,并且是以后學(xué)習(xí)數(shù)軸、相反數(shù)、絕對值以及有理數(shù)運算的基礎(chǔ).2、 教學(xué)目標(biāo)①理解有理數(shù)產(chǎn)生的必然性、合理性及有理數(shù)的分類;②能辨別正、負(fù)數(shù),感受規(guī)定正、負(fù)的相對性;③體驗中國古代在數(shù)的發(fā)展方面的貢獻(xiàn).3、 教學(xué)重點和難點教學(xué)重點:理解正數(shù)和負(fù)數(shù)的概念和有理數(shù)概念.教學(xué)難點:對負(fù)數(shù)概念的理解和有理數(shù)的分類.二、 教學(xué)分析鑒于初一年級學(xué)生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學(xué)法及情感教學(xué),創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生主動思考,用大量的實例和生動的語言激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)節(jié)學(xué)習(xí)情緒。

  • 北師大初中數(shù)學(xué)七年級上冊一元一次方程說課稿

    北師大初中數(shù)學(xué)七年級上冊一元一次方程說課稿

    五、課堂設(shè)計理念本節(jié)課著力體現(xiàn)以下幾個方面:1、突出問題的應(yīng)用意識。在各個環(huán)節(jié)的安排上都設(shè)計成一個個問題,使學(xué)生能圍繞問題展開討思考、討論,進(jìn)行學(xué)習(xí)。2、體現(xiàn)學(xué)生的主體意識。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點等進(jìn)行歸納。3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。4、滲透建模思想。把實際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實際問題抽象出方程模型的能力。

  • 北師大初中數(shù)學(xué)七年級上冊水箱變高了說課稿

    北師大初中數(shù)學(xué)七年級上冊水箱變高了說課稿

    一、教材分析:本節(jié)課選自北京師范大學(xué)教育出版社七年級上冊第五章第三節(jié),是學(xué)生學(xué)習(xí)一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數(shù)量關(guān)系,建立一元一次方程并用之解決實際問題,是學(xué)生運用數(shù)學(xué)知識解決生活中實際問題中的典型素材,可提高學(xué)生解決問題的能力,提高學(xué)習(xí)數(shù)學(xué)的興趣,形成學(xué)以致用的思想,認(rèn)識方程運用模型的重要環(huán)節(jié)。二、學(xué)情分析:通過前幾節(jié)解方程的學(xué)習(xí),學(xué)生已經(jīng)掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關(guān)系列出方程解應(yīng)用題,但學(xué)生在列方程解應(yīng)用題時常常會遇到從題設(shè)條件中找不到所依據(jù)的等量關(guān)系,或雖能找到等量關(guān)系,但不能列出方程這樣的問題,因此,在教師的引導(dǎo)下,通過學(xué)生親自動手制作模型,自主探索在模型變化過程中的等量關(guān)系,建立方程,從而將圖形問題代數(shù)化。

  • 北師大初中數(shù)學(xué)七年級上冊整式說課稿

    北師大初中數(shù)學(xué)七年級上冊整式說課稿

    按此規(guī)律,第n個式子是 。師生活動:學(xué)生通過觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結(jié)論。設(shè)計意圖:進(jìn)一步理解字母表示數(shù)的意義,理解用含有字母的數(shù)學(xué)式子表示實際問題中的數(shù)量關(guān)系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動:教師舉例說明比如:如果p表示我們班的人數(shù),我們班80%的同學(xué)喜歡上數(shù)學(xué)課,那么0.8p 就可以表示我們班喜歡數(shù)學(xué)課的人數(shù)。學(xué)生思考、交流后發(fā)言五、練習(xí)檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個數(shù)比a的 倍小5,則這個數(shù)為 ;(3)全校學(xué)生總數(shù)是x,其中女生占總數(shù)52%,則女生人數(shù)是 ,男生人數(shù)是 ;(4)某校前年購買計算機 x 臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,則學(xué)校三年共購買計算機 臺;(5)某班有a名學(xué)生,現(xiàn)把一批圖書分給全班學(xué)生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個兩位數(shù),十位上的數(shù)字為a,個位上的數(shù)字b,則這個兩位數(shù)為 .師生活動:學(xué)生板演,師生共同評價總結(jié)注意(5)帶分?jǐn)?shù)化假分?jǐn)?shù)設(shè)計意圖:進(jìn)一步提高用含有字母的式子表示實際問題中的數(shù)量關(guān)系的能力。

  • 北師大版初中數(shù)學(xué)九年級上冊相似三角形的性質(zhì)說課稿

    北師大版初中數(shù)學(xué)九年級上冊相似三角形的性質(zhì)說課稿

    接著,引導(dǎo)學(xué)生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學(xué)表達(dá)式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應(yīng)高。求證:AD/A/D/=K首先讓學(xué)生回憶,證明線段成比例學(xué)過哪些方法,接著引導(dǎo)學(xué)生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學(xué)生能找到含對應(yīng)高和對應(yīng)邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學(xué)生口述教師板書規(guī)范的證明過程。接著問學(xué)生還有哪些證明方法?同理可證得其他兩邊上的對應(yīng)高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學(xué)表達(dá)式和證明方法與命題1類似,所以為了提高教學(xué)效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導(dǎo)學(xué)生課堂練習(xí)證明這兩個命題。

  • 北師大版初中數(shù)學(xué)九年級上冊相似三角形的判定說課稿

    北師大版初中數(shù)學(xué)九年級上冊相似三角形的判定說課稿

    (四)提高應(yīng)用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設(shè)計意圖:訓(xùn)練學(xué)生靈活運用知識的能力(五)小結(jié)反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似. 2、在找對應(yīng)角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構(gòu)造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調(diào)兩個基本圖形,培養(yǎng)學(xué)生養(yǎng)成認(rèn)真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應(yīng)角的方法:①已知角相等;②已知角度計算得出相等的對應(yīng)角;③公共角;④對頂角;⑤同角的余(補)角相等.

  • 北師大版初中數(shù)學(xué)九年級上冊反比例函數(shù)的圖象與性質(zhì)說課稿

    北師大版初中數(shù)學(xué)九年級上冊反比例函數(shù)的圖象與性質(zhì)說課稿

    問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計:(1) 引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時間;(2) 充分運用多媒體的優(yōu)勢進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學(xué)生對比和探究。學(xué)生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。

  • 北師大版初中數(shù)學(xué)九年級上冊圖形的放大與縮小說課稿

    北師大版初中數(shù)學(xué)九年級上冊圖形的放大與縮小說課稿

    說教學(xué)難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學(xué)生的年齡和認(rèn)知特點,教材中“圖形的放大與縮小”從對應(yīng)邊的比相等來進(jìn)行安排,而對應(yīng)角的不變也是形狀不變必備的條件,是學(xué)生體會圖形的相似所必需的。學(xué)生在學(xué)習(xí)的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮???)所以我把“學(xué)生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應(yīng)邊的比相等,對應(yīng)角不變)”做為本節(jié)課的難點。說教法、學(xué)法:通過直觀演示,情景激趣,結(jié)合生活讓學(xué)生形成感性認(rèn)識;引導(dǎo)學(xué)生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學(xué)習(xí)、驗證等過程形成理性認(rèn)識。教學(xué)過程:(略)

  • 北師大版初中數(shù)學(xué)九年級上冊測量旗桿的高度說課稿

    北師大版初中數(shù)學(xué)九年級上冊測量旗桿的高度說課稿

    在解決問題的過程中,學(xué)生使用到了生活中常見的工具——標(biāo)桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺到利用身邊的工具完全可以達(dá)到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當(dāng)學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會形成主動尋求知識的內(nèi)在動力。學(xué)生在這種學(xué)習(xí)情境中主動學(xué)習(xí)到知識,比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問題意識。問題解決后,教師應(yīng)讓學(xué)生從解決的問題出發(fā),通過對題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問題,這樣不僅讓學(xué)生掌握了更多的知識,還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。

  • 北師大版初中數(shù)學(xué)九年級上冊消息的傳播說課稿

    北師大版初中數(shù)學(xué)九年級上冊消息的傳播說課稿

    準(zhǔn)備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復(fù)摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復(fù)感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復(fù)聽到消息的可能性是很大的,當(dāng)然重復(fù)感染的可能性也是很大的。

  • 北師大版初中數(shù)學(xué)九年級上冊一元二次方程的應(yīng)用說課稿

    北師大版初中數(shù)學(xué)九年級上冊一元二次方程的應(yīng)用說課稿

    (三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號化,設(shè)定一個量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個位三,個位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強調(diào)對古文化詩詞的閱讀理解,貫通數(shù)學(xué)的實際應(yīng)用。有兩種解題思路:枚舉法和方程法。

  • 北師大初中數(shù)學(xué)九年級上冊用配方法求解簡單的一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊用配方法求解簡單的一元二次方程1教案

    探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!