提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

2022年浙江省溫州市中考語(yǔ)文真題(解析版)

  • 市政務(wù)服務(wù)中心2023年工作總結(jié)和2024年工作思路

    市政務(wù)服務(wù)中心2023年工作總結(jié)和2024年工作思路

    (二)堅(jiān)持?jǐn)?shù)字賦能,推動(dòng)政務(wù)服務(wù)好辦易辦。一是持續(xù)推進(jìn)政務(wù)服務(wù)“一網(wǎng)通辦”。以提升高質(zhì)量“一網(wǎng)通辦”率為抓手,聚焦政務(wù)創(chuàng)新工單采納,指導(dǎo)督促相關(guān)部門加強(qiáng)對(duì)涉企高頻事項(xiàng)表單、材料、流程等辦理要素的研究和梳理,壓實(shí)事項(xiàng)部門主體責(zé)任,督促部門做好向上對(duì)接,提高工單采納率。二是持續(xù)抓好超期受理、辦理件治理工作。督促重點(diǎn)部門落實(shí)專人盯緊審批辦件系統(tǒng),按期受理辦理,抓好超期件整改。三是加大政務(wù)服務(wù)網(wǎng)辦、掌辦、自助辦推廣力度。持續(xù)推進(jìn)政務(wù)大廳智慧化建設(shè),完善24小時(shí)全天候政務(wù)自助服務(wù),優(yōu)化“甌e辦”便民服務(wù)自助終端布點(diǎn),強(qiáng)化政務(wù)服務(wù)網(wǎng)辦、掌辦、自助辦工作導(dǎo)引和幫辦助辦,推動(dòng)政務(wù)服務(wù)網(wǎng)辦掌辦自助辦更加好辦易辦。(三)突出便民利企,推動(dòng)政務(wù)服務(wù)體系建設(shè)。深化市鄉(xiāng)村三級(jí)便民服務(wù)體系建設(shè),持續(xù)優(yōu)化“15分鐘政務(wù)服務(wù)圈”,推動(dòng)政務(wù)服務(wù)更便捷。

  • 人教版高中歷史必修3破解生命起源之謎說課稿2篇

    人教版高中歷史必修3破解生命起源之謎說課稿2篇

    過度:誠(chéng)如牛頓所說 我之所以能夠取得今天的成就有很大原因是站在巨人的肩膀之上設(shè)問3:為什么這個(gè)時(shí)代選擇了達(dá)爾文來完成這一偉大的發(fā)現(xiàn)呢?(達(dá)爾文的個(gè)人努力)補(bǔ)充材料:(1831年起,他隨“貝格爾號(hào)”考察艦進(jìn)行環(huán)球考察5年??疾旖Y(jié)束后,在整理考察資料和實(shí)物標(biāo)本的基礎(chǔ)上,經(jīng)過長(zhǎng)期的研究,于1859年出版了《物種起源》一書,確立了生物的進(jìn)化論說明達(dá)爾文的個(gè)人努力:學(xué)習(xí)、考察、學(xué)習(xí)、不迷信權(quán)威、勇于挑戰(zhàn)、不斷探索的精神,飽覽群書,挑戰(zhàn)和假設(shè)建立在大量的閱讀和觀察的基礎(chǔ)上,科學(xué)實(shí)證等等??梢哉f達(dá)爾文身上有那個(gè)時(shí)代的一個(gè)濃縮的特征,當(dāng)然他還有點(diǎn)運(yùn)氣,不過,機(jī)遇永遠(yuǎn)是為那些有準(zhǔn)備的人提供的。)探究:達(dá)爾文“進(jìn)化論”的影響思路引領(lǐng):科學(xué)理論發(fā)展的影響可以從哪些方面分析?(經(jīng)濟(jì)、科學(xué)理論本身、人文學(xué)科、社會(huì)影響(對(duì)宗教,社會(huì)),對(duì)其他國(guó)家的影響)設(shè)問:達(dá)爾文進(jìn)化論對(duì)1859年及以后的社會(huì)帶來了非常深遠(yuǎn)的影響。有哪些影響呢?①挑戰(zhàn)封建神學(xué)的神創(chuàng)世,促進(jìn)人類認(rèn)識(shí)的飛躍

  • 人教版高中歷史必修3破解生命起源之謎教案2篇

    人教版高中歷史必修3破解生命起源之謎教案2篇

    設(shè)問:你怎么看待這個(gè)問題的?(這是達(dá)爾文沒有想到的,是有人利用了達(dá)爾文的學(xué)說,科學(xué)應(yīng)該與其區(qū)分開來,但是科學(xué)家在研究時(shí),既要做到為追求真理不斷探索,又要有一定的人文精神,比如我們只有以人為本,才能找到解決當(dāng)今社會(huì)面臨的諸如環(huán)保、戰(zhàn)爭(zhēng)、饑荒等問題的途徑,才能構(gòu)建防止核物理技術(shù)、克隆技術(shù)、信息技術(shù)、生物技術(shù)、太空技術(shù)等可能對(duì)人類造成不可逆轉(zhuǎn)的破壞作用的思想基礎(chǔ)、決策機(jī)制和社會(huì)條件。更重要的是社會(huì)和國(guó)家應(yīng)該對(duì)此有足夠的認(rèn)識(shí),正因?yàn)榇?,所以現(xiàn)在當(dāng)一項(xiàng)科學(xué)發(fā)明出臺(tái)后,就會(huì)有一些法律出臺(tái),限制其可能的非人道用途。但是這些影響應(yīng)不成為我們進(jìn)行科學(xué)探究的阻礙。)(3)科學(xué)與宗教的斗爭(zhēng)設(shè)計(jì)意圖:再次引導(dǎo)學(xué)生認(rèn)識(shí),科學(xué)的探索永無止境,同時(shí)也再次認(rèn)識(shí)宗教和科學(xué)理論產(chǎn)生的原因。材料1:1972年,美國(guó)加利福尼亞教育部竟明文規(guī)定,中學(xué)生物學(xué)課本除進(jìn)化論外,必須還有神創(chuàng)論的內(nèi)容,而且兩者的頁(yè)數(shù)要各占一半。

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程1教案

    探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 一年級(jí)下冊(cè)朗文1B 介詞主題教案

    一年級(jí)下冊(cè)朗文1B 介詞主題教案

    知識(shí)與技能To teach the words in the house : sofa table chair box cupboard shelf . Pron. on in under near

  • 建團(tuán)100年心得體會(huì)范文模版

    建團(tuán)100年心得體會(huì)范文模版

    青年應(yīng)該勇于放飛夢(mèng)想,追逐夢(mèng)想。周總理的“為中華之崛起而讀書”和馬丁·路德·金的“我有一個(gè)夢(mèng)想”等啟示我們:年輕人絕不能缺少夢(mèng)想。夢(mèng)想是什么?就是有目標(biāo)。我一直相信,目標(biāo)比努力更重要。有個(gè)故事是這么說的:有個(gè)人好不容易攬到了一個(gè)工程,他便加班加點(diǎn)、認(rèn)認(rèn)真真的施工。完工后,不但沒賺到錢,還挨了一頓揍。什么原因?人家讓他挖一口井,他把圖紙看倒了,蓋了個(gè)煙囪。“磨刀不誤砍柴工。”沒有明確目標(biāo)、找不準(zhǔn)方向,就急于出發(fā)、急于求成,最終的結(jié)果很有可能就是南轅北轍,無功而返。我們偉大的中國(guó)夢(mèng)也是有具體目標(biāo)的,作為青年一代的我們,是實(shí)現(xiàn)目標(biāo)的生力軍,所以我們應(yīng)該追夢(mèng),但更要正確的追夢(mèng)。

  • 建團(tuán)100年心得體會(huì)范文模版

    建團(tuán)100年心得體會(huì)范文模版

    青年應(yīng)該勇于放飛夢(mèng)想,追逐夢(mèng)想。周總理的“為中華之崛起而讀書”和馬丁·路德·金的“我有一個(gè)夢(mèng)想”等啟示我們:年輕人絕不能缺少夢(mèng)想。夢(mèng)想是什么?就是有目標(biāo)。我一直相信,目標(biāo)比努力更重要。有個(gè)故事是這么說的:有個(gè)人好不容易攬到了一個(gè)工程,他便加班加點(diǎn)、認(rèn)認(rèn)真真的施工。完工后,不但沒賺到錢,還挨了一頓揍。什么原因?人家讓他挖一口井,他把圖紙看倒了,蓋了個(gè)煙囪。“磨刀不誤砍柴工?!睕]有明確目標(biāo)、找不準(zhǔn)方向,就急于出發(fā)、急于求成,最終的結(jié)果很有可能就是南轅北轍,無功而返。我們偉大的中國(guó)夢(mèng)也是有具體目標(biāo)的,作為青年一代的我們,是實(shí)現(xiàn)目標(biāo)的生力軍,所以我們應(yīng)該追夢(mèng),但更要正確的追夢(mèng)。

  • 小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課解比例》教案說課稿

    小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課解比例》教案說課稿

    (一)觀圖激趣、設(shè)疑導(dǎo)入 師:同學(xué)們,今天和老師一起完成一個(gè)知識(shí)大比拼的游戲,(PPT課件出示)準(zhǔn)備好了嗎?1、填空。15∶3=(  )∶(  )2∶3=(  )÷(  )0.2=(  )∶2=(  )÷62、根據(jù)比例的基本性質(zhì),把下列各比改寫為乘法等式。3:8=15:40 x:4=1:2生:準(zhǔn)備好了。師:現(xiàn)在我們開始。師:今天和老師學(xué)習(xí)怎樣解比例。(板書課題:解比例)【設(shè)計(jì)意圖】這種方法的導(dǎo)入,讓學(xué)生更快、更集中注意力奔向主題,沒有渲染的成分,簡(jiǎn)單實(shí)用。(二)探究新知1、自學(xué)解比例的意義師:閱讀教材第42頁(yè),理解什么叫做解比例。生:求比例中的未知項(xiàng)叫做解比例。教師板書:求比例中的未知項(xiàng)叫做解比例。2、學(xué)習(xí)例2,應(yīng)用比例的基本性質(zhì)解比例。(1)出示例2的PPT課件。法國(guó)巴黎的埃菲爾鐵塔高度約320 m。北京的世界公園里有一座埃菲爾鐵塔的模型,它的高度與原塔高度的比是1∶10。這座模型高多少米?(2)理解題意,弄清模型的高度∶原塔高度=1∶10。師:同學(xué)們,你是怎樣理解題目中1∶10的?生:題目中告訴我們1∶10是埃菲爾鐵塔模型的高度與原塔高度的比。師:你能根據(jù)題意寫出比例關(guān)系式嗎?生:根據(jù)題意列比例關(guān)系式:模型的高度∶原塔高度=1∶10。師:這個(gè)關(guān)系式用數(shù)字該怎樣表示?生:老師,在這個(gè)比例中我只知道三個(gè)數(shù)字,模型的高度的數(shù)量我不知道是幾呀?師:這位同學(xué)觀察得很仔細(xì),哪位同學(xué)愿意幫助他解決這個(gè)問題?生:老師我想用字母x代替模型高度的數(shù)量,您看可以嗎?師:好的,你的想法非常的好,也很正確!師:題目中告訴我們?cè)叨仁嵌嗌?生:320 m。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)解簡(jiǎn)易方程說課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)解簡(jiǎn)易方程說課稿2篇

    一、本節(jié)內(nèi)容在教材中所處的地位和作用:本單元是在學(xué)生理解了四則運(yùn)算的意義和學(xué)會(huì)用字母表示數(shù)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。由學(xué)習(xí)用字母表示數(shù)到學(xué)習(xí)方程,是學(xué)生又一次接觸初步的代數(shù)思想,這既是對(duì)所學(xué)四則運(yùn)算意義和數(shù)量關(guān)系的進(jìn)一步深化,又是為今后學(xué)習(xí)代數(shù)知識(shí)作準(zhǔn)備,在知識(shí)銜接上具有重要作用。而這一節(jié)恰好在這一單元之中起著承上啟下的作用。二、 教學(xué)目標(biāo):1、在具體的活動(dòng)中,體驗(yàn)和理解等式的性質(zhì),會(huì)用等式的性質(zhì)解簡(jiǎn)單的方程。2、結(jié)合有關(guān)黔金絲猴的數(shù)量情況,對(duì)學(xué)生進(jìn)行保護(hù)珍稀動(dòng)物方面的教育。3、培養(yǎng)學(xué)生的觀察、討論、推理、合作交流能力。三、重點(diǎn)難點(diǎn):重點(diǎn):解簡(jiǎn)單方程、用方程解決問題。因?yàn)榉匠讨R(shí)與現(xiàn)實(shí)生活聯(lián)系比較緊密,同時(shí)是今后學(xué)習(xí)代數(shù)知識(shí)的基礎(chǔ),所以把解簡(jiǎn)單方程作為本節(jié)重點(diǎn)。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)解比例說課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)解比例說課稿2篇

    教學(xué)新課1.教學(xué)例2。出示例2。提問:你能用比例的基本性質(zhì)來解比例,求出未知項(xiàng)x嗎?自己先想一想,有沒有辦法做。再試著做做看。指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說說怎樣想的,第一步的根據(jù)是什么,并向?qū)W生說明解比例的書寫格式。2.教學(xué)例3。出示例題,讓學(xué)生用比例形式讀一讀。讓學(xué)生解答在自己的練習(xí)本上。指名口答解比例過程,老師板書。讓學(xué)生說一說解比例的方法。指出:解比例一般按比例的基本性質(zhì)寫出積相等的式子,再求未知數(shù)x。3.教學(xué)“試一試”。提問已知數(shù)都是怎樣的數(shù)。讓學(xué)生自己解答。學(xué)生口答是怎樣做的,老師板書。4.小結(jié)方法。提問:你認(rèn)為根據(jù)比例的基本性質(zhì)要怎樣解比例?鞏固練習(xí)1.做“練一練”。指名四人板演。其余學(xué)生分兩組,每組兩道題,做在練習(xí)本上。

  • 人教部編版道德與法制四年級(jí)上冊(cè)我們所了解的環(huán)境污染說課稿

    人教部編版道德與法制四年級(jí)上冊(cè)我們所了解的環(huán)境污染說課稿

    首先,學(xué)生閱讀教材第74 頁(yè),教師引導(dǎo)學(xué)生交流:塑料垃圾危害這么大,我們能完全不使用塑料制品嗎?如果完全不使用塑料制品, 我們的生活會(huì)變成怎樣呢?生活中我們離不開塑料制品,那要怎樣合 理使用呢?板書: 減少塑料袋的使用量,盡量使用塑料制品的替代品。然后, 結(jié)合課前調(diào)查和收集到的有關(guān)塑料制品的替代品,先小組討論交流:在生活中有哪些塑料制品的替代品呢?再全班匯報(bào)交流, 教師相機(jī)引導(dǎo)。設(shè)計(jì)意圖:引導(dǎo)學(xué)生了解生活離不開塑料制品,但要合理使用, 減少塑料袋的使用量,盡量使用塑料制品的替代品。環(huán)節(jié)三:課堂小結(jié),內(nèi)化提升 學(xué)生談一談學(xué)習(xí)本節(jié)課的收獲,教師相機(jī)引導(dǎo)。 設(shè)計(jì)意圖:梳理總結(jié),體驗(yàn)收獲與成功的喜悅,內(nèi)化提升學(xué)生的認(rèn)識(shí)與情感。

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)利用去分母解一元一次方程教案1

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)利用去分母解一元一次方程教案1

    探究點(diǎn)三:列一元一次方程解應(yīng)用題某單位計(jì)劃“五一”期間組織職工到東湖旅游,如果單獨(dú)租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個(gè)剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時(shí)租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結(jié)果,不寫分析過程)解析:(1)先設(shè)該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時(shí),利用假設(shè)一種車的數(shù)量,進(jìn)而得出另一種車的數(shù)量求出即可.解:(1)設(shè)該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因?yàn)樽庥?輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)變形后提公因式因式分解教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)變形后提公因式因式分解教案

    (3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)一元一次不等式組的解法教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)一元一次不等式組的解法教案

    把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計(jì)算出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1 ①,2(1-x)≤5?、冢散俚脁<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時(shí),先解每一個(gè)不等式,再確定各個(gè)不等式組的解集的公共部分.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形2教案

    首先請(qǐng)學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來解.教師可請(qǐng)一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評(píng)價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算2教案

    探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)

  • 北師大初中數(shù)學(xué)七年級(jí)上冊(cè)一元一次方程及其解法說課稿

    北師大初中數(shù)學(xué)七年級(jí)上冊(cè)一元一次方程及其解法說課稿

    還有其他解法嗎?從中讓學(xué)生體會(huì)解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗(yàn)的方法,鼓勵(lì)他們養(yǎng)成檢驗(yàn)的習(xí)慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項(xiàng)的規(guī)律是什么?多媒體展示上面變形的過程,讓學(xué)生觀察在變形過程中,變化的項(xiàng)的變化規(guī)律,引出新知識(shí).師提出問題:1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).

  • 北師大初中數(shù)學(xué)七年級(jí)上冊(cè)一元一次方程及其解法說課稿

    北師大初中數(shù)學(xué)七年級(jí)上冊(cè)一元一次方程及其解法說課稿

    1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個(gè)變化過程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對(duì)課前解方程的變形能說出哪一過程是移項(xiàng).對(duì)比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡(jiǎn)便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、化簡(jiǎn)、檢驗(yàn).)

上一頁(yè)123...9596979899100101102103104105106下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!