活動內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒有其他的證明方法呢?這個題還可以用“內(nèi)錯角相等,兩直線平行”來證.
活動內(nèi)容:教師首先讓學生回顧學過的三類事件,接著讓學生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認為正面朝上和正面朝下的可能性相同嗎?(讓學生體驗數(shù)學來源于生活)。活動目的:使學生回顧學過的三類事件,并由擲硬幣游戲培養(yǎng)學生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學生體會猜測結(jié)果,這是很重要的一步,我們所學到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。
這是本節(jié)課的重點。讓同學們將∠aob對折,再折出一個直角三角形(使第一條折痕為斜邊),然后展開,請同學們觀察并思考:后折疊的二條折痕的交點在什么地方?這兩條折痕與角的兩邊有什么位置關(guān)系?這兩條折痕在數(shù)量上有什么關(guān)系?這時有的同學會說:“角的平分線上的點到角的兩邊的距離相等”.即得到了角平分線的性質(zhì)定理的猜想。接著我會讓同學們理論證明,并轉(zhuǎn)化為符號語言,注意分清題設和結(jié)論。有的同學會用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線的性質(zhì)定理。
問題1:你能證明“兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角,且∠1=∠2.求證:a∥b. 問題2:你能證明“兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內(nèi)角,且∠1與∠2互補.求證:a∥b
1、交流與發(fā)現(xiàn)為了了解本校學生暑假期間參加體育活動的情況,學校準備抽取一部分學生進行調(diào)查,你認為按下面的調(diào)查方法取得的結(jié)果能反映全校學生的一般情況嗎?如果不能反映,應當如何改進調(diào)查方法?方法1:調(diào)查學校田徑隊的30名同學;方法2:調(diào)查每個班的男同學;方法3:從每班抽取1名同學進行調(diào)查;方法4:選取每個班級中的一半學生進行調(diào)查.通過前面的活動,學生親身經(jīng)歷了一次數(shù)據(jù)的調(diào)查過程,并通過對所得數(shù)據(jù)的計算和分析,了解了自己在家干家務活的時間所處的位置和水平,在調(diào)查過程中體會到調(diào)查方便有效的重要性.接下來,就能很好地解決交流與發(fā)現(xiàn)中的問題.師生共同討論完成交流與發(fā)現(xiàn).
學習過程:一、自主預習課本P175——186的內(nèi)容,獨立完成課后練習1、2、3、4、5后,與小組同學交流(課前完成)二、回顧課本,思考下列問題:1.SAS定理的內(nèi)容2.ASA定理的內(nèi)容3.SSS定理的內(nèi)容4.幾何證明的過程的步驟
1、方程的定義1)像這種用等號“=”來表示相等關(guān)系的式子,叫等式。(老師給出定義。)2)請大家觀察左邊的這些式子,看看它們有什么共同的特征?(老師提出問題。)3)列方程時,要先設字母表示未知數(shù),然后根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式叫做方程。(學生思考后,老師給出新學內(nèi)容方程的定義。)4)判斷方程的兩個關(guān)鍵要素: ①有未知數(shù) ②是等式(老師提問,并給出。)
2.學會聲母“b”和單韻母“a”拼讀音節(jié)的方法?! ?.學會拼讀“b p m f”與“u、o”組成的音節(jié)?! 〗虒W難點 掌握拼讀聲母和韻母組成的音節(jié)?! 〗虒W過程 一、談話導入 我們已經(jīng)認識了韻母家族的6個朋友(出示a o e i u ü)一起讀讀,你們讀得真準,能不能按字母順序擺一擺,再按順序讀一讀。你們記得真清楚。這節(jié)課我們一起到拼音王國里再認識四個聲母家族的朋友,你們愿意嗎? 二、學習“b p m f ”的音形 ?。ㄒ唬W習“b”的音形 1.出示“b”的圖 ?。?)引導學生提問:圖上的小朋友在干什么? ?。?)問:這個字母念什么?學生試讀“b”?! 。?)講:聽廣播的“播”讀得輕短些,發(fā)音時,把兩片嘴閉合,把氣 憋住,然后突然放開,讓氣流沖出雙唇就是“b”的音?! 。?)教師范讀。 ?。?)學生學讀,體會發(fā)音方法?! 。?)開火車讀。 2.學習“b”的形 ?。?)引導學生提問:怎樣記住“b”的形?或“b”與圖中的哪一部分很像? ?。?)你們能編一個記憶“b”的小兒歌嗎? 拉開天線聽廣播“b b b”。 右下半圓“b b b”?! ?字“b”?! ?.指導書寫b(1)講:我們先認識一個字母基本筆畫:“丨”上豎。 (2)請同學們觀察書中字母“b”先寫哪筆,再寫哪筆,幾筆寫成?占什么格?同桌同學互相說說。(3)學生說筆順、位置,教師范寫,強調(diào)“b”的第一筆在上格的三分之一處起筆到第三條線停筆。 (4)學生書空筆順。 ?。?)學生在拼音本上抄字頭。教師行間巡視,進行個別輔導。糾正學生的寫姿和執(zhí)筆方法。對姿勢正確的學生及時表揚鼓勵。
1、問題1的設計基于學生已有的一元一次方程的知識,學生獨立思考問題,同學會考慮到題中涉及到等量關(guān)系,從中抽象出一元一次方程模型;同學可能想不到用方程的方法解決,可以由組長帶領(lǐng)進行討論探究.2、問題2的設計為了引出二元一次方程,但由于同學的知識有限,可能有個別同學會設兩個未知數(shù),列出二元一次方程;如果沒有生列二元一次方程,教師可引導學生分析題目中有兩個未知量,我們可設兩個未知數(shù)列方程,再次從中抽象出方程模型.根據(jù)方程特點讓生給方程起名,提高學生學習興趣.3、定義的歸納,先請同學們觀察所列的方程,找出它們的共同點,并用自己的語言描述,組內(nèi)交流看法;如果學生概括的不完善,請其他同學補充. 交流完善給出定義,教師規(guī)范定義.
2、學會正確認讀i、u、ü的帶調(diào)韻母。知道ü上標聲調(diào)時,上面的小圓點不寫。3、會在四線格里抄寫i、u、ü三個單韻母。課時安排:2課時第一課時 教學目標:教學單韻母i、u并抄寫?! 〗虒W過程: 一、 復習檢查。 1、猜謎語?! 。?)白鵝倒影是什么韻母? (2)圓臉小姑娘,小辮右邊扎。這是什么韻母? ?。?)像個圓圈是什么韻母? 2、抽讀字母卡片?! 《?、 教學單韻母i?! ?、看圖說話引出i?! D上畫著什么?圖上畫著一件衣服。i的發(fā)音與“衣”的音相同?! ?、教學i的發(fā)音,認清字形。 ?。?)發(fā)音要領(lǐng):發(fā)音時嘴比發(fā)e時開得更小,只留一條小縫,舌前部升高,接近上腭,舌尖抵住下齒背,讓氣從舌尖和上腭中間自然流出?! 。?)教師范讀、領(lǐng)讀。 ?。?)記憶字形?! 像什么?順口溜:“像支蠟燭i、i、i?!薄 ?、書寫指導:先寫豎,再寫點,兩筆寫成?! ∪?、 教學單韻母u。 1、看圖說話引出u?! D上畫著什么?“樹上有一只烏鴉?!睘貘f的“烏”就是u?! ?、教學u的發(fā)音,認清字形?! 。?)發(fā)音要領(lǐng):發(fā)音時把嘴唇收攏,嘴唇比發(fā)o時更圓更小,舌尖后縮,舌根抬高,讓氣從小洞中出來。 ?。?)教師范讀,領(lǐng)讀?! 。?)記憶字形。 可用順口溜:“像只茶杯u、u、u?!薄 ?、書寫指導:u一筆寫成?! ∷?、 鞏固復習。
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據(jù)學生情況和上課情況適當調(diào)整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學習了一次函數(shù)圖象的應用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.
方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設計一次函數(shù)的應用單個一次函數(shù)圖象的應用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.
學習目標1.掌握兩個一次函數(shù)圖像的應用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設計1.函數(shù)與圖象之間是一一對應的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應關(guān)系.
四、教學設計反思這節(jié)內(nèi)容是學生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應關(guān)系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖象的對應關(guān)系應讓學生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應讓學生自己得出.在得出結(jié)論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據(jù)學生狀況,教學設計也應做出相應的調(diào)整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關(guān)注代數(shù)表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應的圖形具有什么特征呢?
解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標準分類時,要做到不重不漏,分類標準不同時,分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點二:幾何體的形成筆尖畫線可以理解為點動成線.使用數(shù)學知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運動.解:(1)點動成線;(2)線動成面;(3)面動成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學知識來解釋,關(guān)鍵是要找到生活實例與數(shù)學知識的連接點,如第(1)題可將流星看作一個點,則“點動成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
四、做一做(實踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學做得比較標準。2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學生閱讀材料《晶體--自然界的多面體》,讓學生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學生探索的欲望。教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。2、再讓學生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導學生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。
3.想一想在例1中,(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標軸上點的坐標有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標系。2.在給定的直角坐標系中,由點的位置寫出它的坐標。3.能適當建立直角坐標系,寫出直角坐標系中有關(guān)點的坐標。4.橫(縱)坐標相同的點的直線平行于y軸,垂直于x軸;連接縱坐標相同的點的直線平行于x軸,垂直于y軸。5.坐標軸上點的縱坐標為0;縱坐標軸上點的坐標為0。6.各個象限內(nèi)的點的坐標特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習題3.5 1,2,3四、 教學反思通過“坐標與軸對稱”,經(jīng)歷圖形坐標變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學生對數(shù)學學習的好奇心與求知欲,學生能積極參與數(shù)學學習活動;積極交流合作,體驗數(shù)學活動充滿著探索與創(chuàng)造。教學中務必給學生創(chuàng)造自主學習與合作交流的機會,留給學生充足的動手機會和思考空間,教師不要急于下結(jié)論。事先一定要準備好坐標紙等,提高課堂效率。