《集郵》是北師大版小學(xué)三年級下冊第一單元除法里的一節(jié)課,主要教學(xué)內(nèi)容是三位數(shù)除以一位數(shù),被除數(shù)的最高位比除數(shù)小,商是兩位數(shù)的除法。教材安排了估算和筆算兩種方法,估算是讓學(xué)生算出大概的結(jié)果,它的最終目的是為學(xué)會筆算服務(wù)的,如果用于檢驗(yàn)筆算結(jié)果的準(zhǔn)確性及試商等。由于學(xué)生已經(jīng)學(xué)習(xí)了一位數(shù)除兩位數(shù)(首位不夠除)的筆算計(jì)算方法,再加上大量的練習(xí),因此一些基本的計(jì)算過程及格式學(xué)生理解和掌握起來應(yīng)該不難,關(guān)鍵還是要把握住“當(dāng)被除數(shù)的最高位不夠商一,用除數(shù)去除被除數(shù)的前兩位”這個知識點(diǎn)。二、說學(xué)情教材呈現(xiàn)了估算和筆算的過程,注重培養(yǎng)學(xué)生的估算意識,幫助學(xué)生體會估算、筆算不同的特點(diǎn)。本節(jié)課有一個新的知識點(diǎn),即當(dāng)被除數(shù)第一位不夠除的時候就用前兩位去除。相對來說,這些算式的數(shù)字較大,學(xué)生容易算錯,教材中提出了用乘法驗(yàn)算除法的方法,以此培養(yǎng)學(xué)生驗(yàn)算的習(xí)慣。
為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊何濉⒄f教法學(xué)法我依據(jù)“教學(xué)有法,教無定法,貴在得法”,同時為了達(dá)到既定的教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn)。本節(jié)課我采用的教學(xué)方法主要有創(chuàng)設(shè)情境法,引導(dǎo)啟發(fā)法,同時輔以講練結(jié)合,借助現(xiàn)代化的教學(xué)手段,以達(dá)到良好的教學(xué)效果。根據(jù)新課標(biāo)的要求,同時又設(shè)計(jì)了與教法相適應(yīng)的學(xué)法,我將“學(xué)習(xí)的主動權(quán)還給學(xué)生”,通過自主探索,合作交流等方式自主學(xué)習(xí),真正讓數(shù)學(xué)教學(xué)的課堂變成學(xué)生的課堂。六、說教學(xué)準(zhǔn)備為了更好的達(dá)成本節(jié)課的課堂教學(xué)目標(biāo),老師學(xué)生需要做如下的教學(xué)準(zhǔn)備:1、教具:根據(jù)教材內(nèi)容自制的多媒體課件等教具。2、學(xué)具:學(xué)生以小組為單位準(zhǔn)備表格等學(xué)具。
2.應(yīng)用意識方面,解決問題能力較差。一方面是符號意識、應(yīng)用意識需要發(fā)展,從現(xiàn)實(shí)問題抽象出數(shù)學(xué)問題的能力和主動用數(shù)學(xué)思想分析現(xiàn)實(shí)問題的習(xí)慣。二是分析問題、解決問題的策略缺乏、靈活使用的能力不足(幾何直觀、模型思想、歸納、類比、逆向思考等方法)。五、教法、學(xué)法教法:利用談話法,引導(dǎo)學(xué)生思考、探究的過程,實(shí)現(xiàn)教師主導(dǎo)下的學(xué)生的自主建構(gòu)。利用講解法,在探究學(xué)習(xí)的基礎(chǔ)上,教師和學(xué)生共同對重點(diǎn)、難點(diǎn)進(jìn)行梳理,引導(dǎo)學(xué)生建立清晰、系統(tǒng)的知識結(jié)構(gòu)。利用練習(xí)法,鞏固知識,發(fā)展學(xué)生的運(yùn)算能力、符合意識、應(yīng)用意識。學(xué)法:自主探究,有利于形成主動思考的習(xí)慣,思維能力獲得提高。成功的探索使其獲得理智感,有益于學(xué)習(xí)興趣的培養(yǎng)。合作學(xué)習(xí),交流比較,質(zhì)疑反思的經(jīng)驗(yàn)有利于學(xué)生創(chuàng)新能力的提升。合作交流同時也促進(jìn)個性、社會性的發(fā)展。
{二}、努力實(shí)現(xiàn)扶與放的和諧統(tǒng)一,共同構(gòu)建有效課堂。學(xué)生能自己解決的決不包辦代替:學(xué)生可能完成的,充分相信學(xué)生,發(fā)揮自主探索與合作交流的優(yōu)點(diǎn),讓學(xué)生有一個充分體驗(yàn)成功展示自我的舞臺;學(xué)生有困難的,給予適當(dāng)引導(dǎo),拒絕無效探究,提高課堂效率。四、教學(xué)目標(biāo):基于對教材的理解和分析,我將該節(jié)課的教學(xué)目標(biāo)定位為:1、幫助學(xué)生理解正比例的意義。用字母表示變量之間的關(guān)系,加深對正比例的認(rèn)識。2、通過觀察、比較、判斷、歸納等方法,培養(yǎng)學(xué)生用事物相互聯(lián)系和發(fā)展變化的觀點(diǎn)來分析問題,使學(xué)生能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。3、學(xué)生在自主探索,合作交流中獲得積極的數(shù)學(xué)情感體驗(yàn),得到必要的數(shù)學(xué)思維訓(xùn)練。
(1)課件顯示搭正方形的畫面以及問題“4根小棒搭一個正方形,13根小棒可以搭多少個正方形,還剩幾根?”。(2)組織小組討論:有13根小棒,能搭幾個正方形?請每個同學(xué)利用學(xué)具擺一擺,再依據(jù)上節(jié)課學(xué)習(xí)的除法算式,小組內(nèi)討論用豎式怎樣表示?!驹O(shè)計(jì)意圖:通過擺小棒搭正方形和自主探究等開發(fā)學(xué)生思維,促進(jìn)學(xué)生多層次思考,培養(yǎng)孩子良好的思維方式,推動學(xué)生積極思考,逐步開闊學(xué)生解決問題的思路,培養(yǎng)學(xué)生橫向思維能力?!浚?)進(jìn)行全班交流。指名回答;引導(dǎo)學(xué)生探究豎式各數(shù)表示的意思及單位名稱的寫法,并進(jìn)一步認(rèn)識余數(shù)。課件顯示搭小棒的過程及橫式和豎式:13÷4=3(個)……1(根)答:可以搭3個正方形,還剩1根。引導(dǎo)學(xué)生認(rèn)識豎式中:“13”表示把13根小棒拿去分,“4”表示擺一個正方形需要4根小棒,“3”表示可以擺3個正方形(強(qiáng)調(diào)單位“個”),“12”表示3個正方形共12根(4×3=12)?!?”表示擺了3個后還剩下1根(強(qiáng)調(diào)單位:“根”),說明“1”是這個豎式的余數(shù),這1根不能再繼續(xù)往下分了。
3、教學(xué)目標(biāo):(1)能靈活運(yùn)用有余數(shù)除法的有關(guān)知識解決生活中簡單的實(shí)際問題,培養(yǎng)應(yīng)用意識。(2)在合作交流中勇于表達(dá)自己的想法,學(xué)會傾聽別人的意見。(3)通過合理解決實(shí)際問題體驗(yàn)成功的喜悅。4、教學(xué)重點(diǎn):解決有關(guān)“有余數(shù)除法問題”的簡單實(shí)際問題。5、教學(xué)難點(diǎn):靈活處理有余數(shù)除法中需要根據(jù)實(shí)際情況而定的對余數(shù)的“取”與“舍”的問題,即對于商的“進(jìn)1法”和“去尾法”?!窘谭▽W(xué)法】教法:整個教學(xué)過程,以學(xué)生為主,教師只是學(xué)生學(xué)習(xí)的服務(wù)者,知識的引路人,在教學(xué)設(shè)計(jì)中,正確理解新教材,抓住新教材特點(diǎn),進(jìn)行有創(chuàng)造性地使用教材,通過師生互動教學(xué),引導(dǎo)學(xué)生運(yùn)用動手實(shí)踐、自主探索和合作交流等學(xué)習(xí)方式,提高參與探索的欲望。學(xué)法:1、指導(dǎo)“探索實(shí)踐”。讓學(xué)生在探索、研究活動中感悟根據(jù)實(shí)際情況而定的對于商的“進(jìn)1法”和“去尾法”。2、引導(dǎo)“思”鼓勵“問”。讓學(xué)生在探究活動中勇于思考,大膽質(zhì)疑,不斷創(chuàng)新。
一、說教材:1、教學(xué)內(nèi)容:北師大版小學(xué)數(shù)學(xué)三年級下冊第28-29頁。2、教材簡析:這部分知識的教學(xué)是建立在上節(jié)課學(xué)習(xí)了兩位數(shù)乘兩位數(shù)的算法,以及對進(jìn)位的乘法也有一定經(jīng)驗(yàn)的基礎(chǔ)上進(jìn)行的,目的是使學(xué)生進(jìn)一步掌握兩位數(shù)乘兩位數(shù)(進(jìn)位)的算法。本節(jié)課主要通過“電影院”這一學(xué)生熟悉的生活情境,在引導(dǎo)學(xué)生觀察的基礎(chǔ)上,培養(yǎng)學(xué)生的估算意識和估算能力;讓學(xué)生在具體的教學(xué)活動中,拓展學(xué)生的思維,體驗(yàn)算法策略的多樣化,進(jìn)一步掌握兩位數(shù)乘兩位數(shù)(有進(jìn)位)的算法,并能解決一些簡單的實(shí)際問題。二、、教學(xué)目標(biāo):▲知識與技能:(1)結(jié)合“電影院”的具體情境,進(jìn)一步掌握兩位數(shù)乘兩位數(shù)(有進(jìn)位)的計(jì)算方法。(2)對兩位數(shù)乘兩位數(shù)(有進(jìn)位)能進(jìn)行估算和計(jì)算。(3)能解決一些簡單實(shí)際問題。
一、教材:《畫一畫》這一內(nèi)容是在學(xué)生學(xué)習(xí)了《變化的量》和《正比例》這兩節(jié)內(nèi)容以后安排的,學(xué)生已經(jīng)結(jié)合大量的生活情境認(rèn)識了生活中存在的許多相互依賴的變量,而且體會了這些變量之間的關(guān)系,認(rèn)識了正比例及其意義,能初步判斷兩個相關(guān)聯(lián)的兩是不是成正比例,感受了正比例在生活中的應(yīng)用,學(xué)生對正比例的認(rèn)識有了一定的基礎(chǔ)。教材安排這一內(nèi)容,一是讓學(xué)生進(jìn)一步認(rèn)識正比例,以及正比例中兩個相關(guān)聯(lián)的量之間的關(guān)系;二是通過讓學(xué)生在方格紙上描出成正比例的量所對應(yīng)的點(diǎn)并能在圖中根據(jù)一個變量的值估計(jì)它所對應(yīng)的變量的值,從而認(rèn)識正比例圖像的特點(diǎn)。主要意圖是引導(dǎo)學(xué)生運(yùn)用已有的知識,用圖的形式去直觀表示兩個成正比例的量的變化關(guān)系,鼓勵學(xué)生發(fā)現(xiàn)當(dāng)兩個變量成正比例關(guān)系時,所繪成的圖像是一條直線,在此基礎(chǔ)上,鼓勵學(xué)生利用圖,進(jìn)行一些估計(jì),解決一些問題,為以后進(jìn)一步學(xué)習(xí)正比例函數(shù)打下一定的基礎(chǔ)。
第三環(huán)節(jié)。嘗試練習(xí),信息反饋。讓學(xué)生嘗試練習(xí):課本p152第3題,并引導(dǎo)中下學(xué)生看p152例題,教師及時點(diǎn)撥講評?!鹘處煱才胚@一過程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動活潑、主動求知和富有的個性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到正強(qiáng)化。第四環(huán)節(jié)。小結(jié)階段。這是最后的一個環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?學(xué)生展開討論,得到下列結(jié)論:A.左邊是乘法,而右邊是差,不是積;B.左右兩邊都不是整式;C.從右邊到左邊是利用了因式分解的變形方法進(jìn)行分解。由此可知,上式不是因式分解。進(jìn)而,教師呈現(xiàn)因式分解定義?!鹘處煱才胚@一過程意圖是:學(xué)生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開始分散。
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
解:(1)設(shè)第一次落地時,拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點(diǎn)與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點(diǎn)A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點(diǎn)A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進(jìn)時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計(jì)算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點(diǎn)可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時,所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書設(shè)計(jì)1.邊邊邊:三邊對應(yīng)相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對新知識的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識,從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對新知識的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點(diǎn))2.能運(yùn)用“角邊角”“角角邊”判定方法解決有關(guān)問題.(難點(diǎn)) 一、情境導(dǎo)入如圖所示,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學(xué)生活動:學(xué)生先自主探究出答案,然后再與同學(xué)進(jìn)行交流.教師點(diǎn)撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點(diǎn)一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長,根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個頂點(diǎn)),再分別以這條邊的兩個端點(diǎn)為圓心,以已知線段長為半徑畫弧,兩弧的交點(diǎn)即為另一個頂點(diǎn).三、板書設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學(xué)生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學(xué)生的動手能力、語言表達(dá)能力
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時,運(yùn)用直角三角形有關(guān)知識,通過數(shù)值計(jì)算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯.四、布置作業(yè)