●教學(xué)目標(一)教學(xué)知識點1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實際問題訓(xùn)練學(xué)生的運用能力.(三)情 感與價值觀要求1.學(xué) 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學(xué)生對知識的應(yīng)用意識.●教學(xué)重點1.相似三角形的周長比、面積比與相似比關(guān)系的推導(dǎo).2.運用相似三角形的比例關(guān)系解決實際問題.●教學(xué)難點相似三角形周長比、面積比與相似比的關(guān)系的推導(dǎo)及運用.●教學(xué)方法引導(dǎo)啟發(fā)式通過溫故知新,知識遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應(yīng)用;(重點)2.通過復(fù)習(xí)圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應(yīng)用這些公式解決一些問題.(難點)一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
(二)情境導(dǎo)入師:同學(xué)們你們喜歡去公園玩嗎?(喜歡)那老師就帶你們乘公交車去玩吧!出示:課本28頁掛圖,引導(dǎo)學(xué)生進一步進行認真觀察,根據(jù)圖意,編出應(yīng)用題:車上有67人,到某一站后下車25人,上車28人,現(xiàn)在車上還有多少人?引導(dǎo)學(xué)生列出算式:67-25+28=【從學(xué)生熟悉的生活情形出發(fā),選擇學(xué)生常見的乘車情況,創(chuàng)設(shè)了一個問題情境,讓學(xué)生憑著日常生活中的經(jīng)驗,通過看一看,說一說情境展現(xiàn)的內(nèi)容活動,激發(fā)學(xué)生學(xué)習(xí)的興趣,并提到相關(guān)的數(shù)學(xué)問題】1、讀題,讓學(xué)生說一說這道題與剛才所做的復(fù)習(xí)題有什么不同?學(xué)生可能會說:復(fù)習(xí)題是連加,連減,這道題是有加有減。教師可向?qū)W生進一步說明,這節(jié)課我們就來學(xué)習(xí)像這樣的加減混合運算。師板書課題,加減混合。2、通過對連加連減的學(xué)習(xí),你能用學(xué)過的知識做出這道題嗎?
一、結(jié)合生活情境與操作活動,初步認識角,知道角各部分的名稱,初步學(xué)會用尺畫角?! ?.讓學(xué)生結(jié)合熟悉的生活情景圖,并從其中的實物圖中抽象出角,親歷操作活動來認識角,知道角的各部分的名稱,知道一個角由一個頂點和兩條邊組成,初步學(xué)會用尺畫角的方法?! ?.通過折疊、拼擺、制作等實際操作活動,幫助學(xué)生建立對角的感性認識,知道什么樣的圖形是角。 3.讓學(xué)生知道畫一個角的方法:從一個點起,用尺子向不同的方向畫兩條直直的線,就畫成一個角?! ?.知道角的大小與角的兩邊的長短沒有關(guān)系,與兩邊叉開的大小有關(guān)?! ?.通過觀察實物并從中抽象出角,經(jīng)歷數(shù)學(xué)知識抽象的過程,感受到數(shù)學(xué)知識的現(xiàn)實性,學(xué)會從數(shù)學(xué)的角度去觀察、分析現(xiàn)實問題,從而激發(fā)學(xué)生探索數(shù)學(xué)的興趣?! 《⒃谡n程教學(xué)中,要注重挖掘角在生活中的“原型”。學(xué)生對此有一定的生活積累,但學(xué)生理解來自于他們作用于的物體的活動。因此只有親自操作,獲得直接的經(jīng)驗,才便于在此基礎(chǔ)上進行正確的抽象和概括,形成較系統(tǒng)的概念和數(shù)學(xué)模型。1.教師應(yīng)提供恰當?shù)摹⒕倪x擇的生活情景圖,讓學(xué)生找生活中的角,并將這種角與數(shù)學(xué)意義的上角加以區(qū)分、對比觀察,加深對數(shù)學(xué)意義上角的感知,從而引領(lǐng)學(xué)生從數(shù)學(xué)角度認識角,建立角的正確表象。
一、說教材:本課時主要的內(nèi)容就是讓學(xué)生在情境中掌握兩位數(shù)加兩位數(shù)的進位加法計算,讓學(xué)生通過嘗試和探索出多種算法,體驗多種算法,然后比較出最好的算法。教學(xué)目標:1、通過具體的情境使學(xué)生更一步的理解加法的意義和提高學(xué)生的估算意識。2、通過學(xué)生的合作學(xué)習(xí)從而能探討出多種計算兩位數(shù)減兩位退位減法的方法。3、培養(yǎng)學(xué)生的數(shù)學(xué)口語表達能力,提高學(xué)生的學(xué)習(xí)興趣。4、掌握兩位數(shù)加兩位數(shù)(進位加)豎式的寫法。重點:(1)通過學(xué)生的合作學(xué)習(xí)從而能探討出多種計算兩位數(shù)減兩位退位減法的方法。(2)掌握筆算加法的計算法則。難點:對多樣化算法進行優(yōu)化,達到正確完成計算。發(fā)展學(xué)生的估算意識、和探究意識和解決實際問題的能力。二、說教法:組織學(xué)生在前面計算的基礎(chǔ)上,自主探索出兩位數(shù)加兩位(進位加)的計算方法,并通過交流、討論,達到對算法的優(yōu)化,在通過“試一試”、“算一算”、“想一想”等形式達到知識的掌握。
說教材:(1)教學(xué)內(nèi)容:人民教育出版社出版的九年義務(wù)教育六年制小學(xué)數(shù)學(xué)教科書第三冊中的第16—17頁的例1及“做一做”,練習(xí)三1、2、3、4、題。(2)教材分析(教材的前后聯(lián)系,地位作用及編排意圖):兩位數(shù)減兩位數(shù)是學(xué)生學(xué)習(xí)筆算減法的開始,也是以后學(xué)習(xí)多位筆算減法的基礎(chǔ)。由于筆算減法是在口算減法的基礎(chǔ)上進行教學(xué)的,所以教材先安排了口算整十數(shù)減整十數(shù)、兩位數(shù)減整十數(shù)、兩位數(shù)減一位數(shù)的復(fù)習(xí),為理解筆算做好準備。教材由兩位數(shù)減一位數(shù)的不退位減法口算引出兩位數(shù)減一位數(shù)的不退位減法的筆算。說明這種口算題也可以寫成豎式,用筆算。然后,對照直觀圖說明計算時要把相同數(shù)位對齊,從個位減起的計算順序。(3)教學(xué)目標:根據(jù)教材的編排意圖以及學(xué)生的實際,我確定本課的教學(xué)目標是:使學(xué)生理解筆算兩位數(shù)減兩位數(shù)的算理,掌握豎式的寫法和計算方法,并能正確的筆算。培養(yǎng)學(xué)生知識遷移的能力和口頭表達能力,培養(yǎng)學(xué)生仔細計算的良好學(xué)習(xí)習(xí)慣。
一、說教材1、教學(xué)內(nèi)容本節(jié)課是義務(wù)教育課程標準實驗教材人教版小學(xué)數(shù)學(xué)第三冊18至19頁的內(nèi)容。它是在學(xué)生學(xué)習(xí)了20以內(nèi)的退位減法、兩位數(shù)減一位數(shù)和兩位數(shù)減整十數(shù)以及兩位數(shù)減兩位數(shù)的不退位減法筆算的基礎(chǔ)上學(xué)習(xí)的。它是以后學(xué)習(xí)多位數(shù)減法的重要基礎(chǔ)。2、教學(xué)目標(1)、知識目標:使學(xué)生在理解算理的基礎(chǔ)上初步掌握兩位數(shù)退位減法的計算方法,并能正確的進行計算。(2)、技能目標:培養(yǎng)學(xué)生的動手操作能力,發(fā)展學(xué)生的思維和語言表達能力。(3)、情感目標:通過情景的創(chuàng)設(shè),培養(yǎng)學(xué)生的愛國之情,同時讓學(xué)生在自主探索算法的基礎(chǔ)上體驗到成功的喜悅。3、教學(xué)重點:本節(jié)課的重點是理解筆算兩位數(shù)退位減的算理,能正確用豎式計算。4、教學(xué)難點:理解兩位數(shù)減兩位數(shù)退位減法的算理。
各位評委:大家好!今天我說課的內(nèi)容是人教版五年級上冊第一單元《小數(shù)乘法》的第二課時小數(shù)乘小數(shù)(一)說教材1、教學(xué)內(nèi)容:P4例3、做一做,P5例4、做一做,P8—9練習(xí)一第5—9、13題。2、教學(xué)目的:1、掌握小數(shù)乘法的計算法則,使學(xué)生掌握在確定積的小數(shù)位時,位數(shù)不夠的,要在前面用0補足。2、比較正確地計算小數(shù)乘法,提高計算能力。3、培養(yǎng)學(xué)生的遷移類推能力和概括能力,以及運用所學(xué)知識解決新問題的能力。3、教學(xué)重點:小數(shù)乘法的計算法則。4、教學(xué)難點:小數(shù)乘法中積的小數(shù)位數(shù)和小數(shù)點的定位,乘得的積小數(shù)位數(shù)不夠的,要在前面用0補足。(二)說教法和學(xué)法本課所用的教學(xué)方法有: 講授法、談話法、討論法、練習(xí)法。 學(xué)法有:自學(xué)法,小組合作學(xué)習(xí)的方法,遷移類推概括法,歸納總結(jié)法。
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
【學(xué)習(xí)目標】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
【學(xué)習(xí)目標】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
一、本節(jié)內(nèi)容在教材中所處的地位和作用:本單元是在學(xué)生理解了四則運算的意義和學(xué)會用字母表示數(shù)的基礎(chǔ)上進行學(xué)習(xí)的。由學(xué)習(xí)用字母表示數(shù)到學(xué)習(xí)方程,是學(xué)生又一次接觸初步的代數(shù)思想,這既是對所學(xué)四則運算意義和數(shù)量關(guān)系的進一步深化,又是為今后學(xué)習(xí)代數(shù)知識作準備,在知識銜接上具有重要作用。而這一節(jié)恰好在這一單元之中起著承上啟下的作用。二、 教學(xué)目標:1、在具體的活動中,體驗和理解等式的性質(zhì),會用等式的性質(zhì)解簡單的方程。2、結(jié)合有關(guān)黔金絲猴的數(shù)量情況,對學(xué)生進行保護珍稀動物方面的教育。3、培養(yǎng)學(xué)生的觀察、討論、推理、合作交流能力。三、重點難點:重點:解簡單方程、用方程解決問題。因為方程知識與現(xiàn)實生活聯(lián)系比較緊密,同時是今后學(xué)習(xí)代數(shù)知識的基礎(chǔ),所以把解簡單方程作為本節(jié)重點。
二、探究交流,引導(dǎo)概括 —— 方程為了培養(yǎng)學(xué)生的發(fā)現(xiàn)和抽象概括能力,同時進一步理解方程的意義,我讓學(xué)生分組學(xué)習(xí),引導(dǎo)他們先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄?shù)仁降挠泄餐卣?,然后歸納概括什么叫做方程?最后得出:像這樣的含有未知數(shù)的等式,叫做方程。三、討論比較,辨析、概念 —— 等式與方程的關(guān)系為了體現(xiàn)學(xué)生的主體性,培養(yǎng)學(xué)生的合作意識,同時讓學(xué)生在解決問題的過程中得到創(chuàng)造的樂趣。通過四人合作用自己的方法創(chuàng)作 “ 方程 ” 與 “ 等式 ” 的關(guān)系圖,并用自己的話說一說 “ 等式 ” 與 “ 方程 ” 的關(guān)系:方程一定是等式,但等式不一定是方程。四、鞏固深化,拓展思維 —— 練習(xí)1 、“做一做”:2、判斷是否方程3、“方程一定是等式,等式也一定是方程”這句話對嗎?4、叫學(xué)生用圖來表示等式和方程的關(guān)系。
如通過數(shù)方格的方法求出三角形面積,讓學(xué)生用兩個三角形拼擺。一方面啟發(fā)學(xué)生設(shè)法把研究的圖形轉(zhuǎn)化為已經(jīng)會計算面積的圖形,另一方面主動探索所研究的圖形與已學(xué)的預(yù)先之間有什么樣的聯(lián)系,從而找出面積的計算方法,而不是把計算公式直接告訴學(xué)生。這樣,既使學(xué)生在理解的基礎(chǔ)上掌握三角形面積計算公式,印象深刻,又培養(yǎng)了學(xué)生的思維能力,動手操作能力,發(fā)展了空間觀念。5、教材重點、難點和關(guān)鍵本節(jié)教學(xué)內(nèi)容的重點是掌握三角形面積的計算公式;難點是理解三角形面積公式的推導(dǎo)過程;關(guān)鍵是通過操作實驗,使學(xué)生明確每個三角形的面積是等底等高的平行四邊形面積一半。在教學(xué)過程中注意以下幾點,重點難點問題就迎刃而解。⑴ 加強學(xué)生動手操作,通過三次對兩個完全相同的直角三角形、銳角三角形、鈍角三角形的拼擺,引導(dǎo)學(xué)生弄清三角形面積與平行四邊形面積關(guān)系,啟發(fā)學(xué)生探索三角形面積的計算方法。