提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

學(xué)校教學(xué)常規(guī)管理制度(完整)

  • 小學(xué)美術(shù)人教版六年級上冊《第6課讓剪影動起來》教學(xué)設(shè)計

    小學(xué)美術(shù)人教版六年級上冊《第6課讓剪影動起來》教學(xué)設(shè)計

    2教學(xué)目標(biāo)⒈知識與技能目標(biāo)了解皮影的相關(guān)知識,體會皮影藝術(shù)的特點。⒉過程與方法目標(biāo)學(xué)習(xí)怎樣去制作剪影,最后怎樣讓剪影動起來,體驗皮影藝人的表演技能。⒊情感與價值觀目標(biāo)通過對剪影知識的了解和制作剪影,增強學(xué)生對中國民間藝術(shù)的熱愛,培養(yǎng)學(xué)生的創(chuàng)造精神。

  • 小學(xué)美術(shù)人教版四年級下冊《第2課點的魅力1》教學(xué)設(shè)計說課稿

    小學(xué)美術(shù)人教版四年級下冊《第2課點的魅力1》教學(xué)設(shè)計說課稿

    2學(xué)情分析四年級的學(xué)生正處于素質(zhì)教育的階段,學(xué)生對美術(shù)正逐步深入了解,并掌握了一些美術(shù)基礎(chǔ)知識和基本技能,多數(shù)同學(xué)對美術(shù)興趣濃厚,有較強的求知欲和教強的創(chuàng)新力,學(xué)生的美術(shù)素質(zhì)得到進(jìn)一步提高。3重點難點教學(xué)重點:讓學(xué)生從大自然和生活的萬物中發(fā)現(xiàn)線條的幾種變化,發(fā)現(xiàn)圓點在紙上的不同位置產(chǎn)生的不同感覺。

  • 小學(xué)美術(shù)人教版六年級下冊《第9課圖文并茂3》教學(xué)設(shè)計說課稿

    小學(xué)美術(shù)人教版六年級下冊《第9課圖文并茂3》教學(xué)設(shè)計說課稿

    2重點難點教學(xué)重點第一課時:了解繪畫故事的表現(xiàn)特點,感受真、善、美。第二課時:繪畫自編故事的創(chuàng)作特點及步驟。教學(xué)難點第一課時:選材、構(gòu)思設(shè)計。第二課時:構(gòu)圖與繪制3教學(xué)過程3.1 第一課時教學(xué)活動活動1【導(dǎo)入】“連連看” 教師提供數(shù)張圖片和幾句話(或幾段文字),請學(xué)生根據(jù)文字找到相應(yīng)的圖畫將它們連起來,并找出先后順序?qū)⒐适轮v完整。教師小結(jié),出示課題《圖文并茂》。設(shè)計意圖:以游戲的形式“連一連”,激發(fā)學(xué)生的好奇心和興趣,以飽滿的熱情投入學(xué)習(xí)內(nèi)容——圖文并茂。

  • 小學(xué)美術(shù)人教版二年級上冊《第3課裝飾自己的名字》教學(xué)設(shè)計說課稿

    小學(xué)美術(shù)人教版二年級上冊《第3課裝飾自己的名字》教學(xué)設(shè)計說課稿

    2學(xué)情分析二年級學(xué)生活潑可愛,思維獨特,喜歡按照自己的想法自由地表現(xiàn)畫面。好奇心強,愛表現(xiàn)自己,但動手能力較差,只能用簡單的工具和繪畫材料來稚拙地表現(xiàn)自己的想法。本課以學(xué)生親切、熟悉的名字為題材,更好的激發(fā)學(xué)生的表現(xiàn)欲望和獨創(chuàng)思維,讓學(xué)生能夠自信、大膽、自由地通過美術(shù)形式表達(dá)想法與感情。3重點難點重點:設(shè)計具有自己特色的名字。難點:能對名字的字形進(jìn)行分析,巧妙地運用筆畫特征進(jìn)行想象設(shè)計。教學(xué)活動

  • 小學(xué)美術(shù)人教版三年級上冊《第1課魔幻的顏色》教學(xué)設(shè)計模板說課稿

    小學(xué)美術(shù)人教版三年級上冊《第1課魔幻的顏色》教學(xué)設(shè)計模板說課稿

    3課題類型造型表現(xiàn)4教學(xué)目標(biāo)1、認(rèn)識三原色,讓學(xué)生初步了解三原色的知識。2、觀察兩個原色調(diào)和之后產(chǎn)生的色彩變化,說出由兩原色調(diào)出的第三個顏色(間色)3、能夠調(diào)出預(yù)想的色彩,并用它們涂抹成一幅繪畫作品。5重點難點1、引導(dǎo)學(xué)生觀察三原色在相互流動中的色彩變化。2、引導(dǎo)學(xué)生進(jìn)行色彩的調(diào)和、搭配。3、培養(yǎng)學(xué)生愛色彩、善于動手、善于觀察、善于動腦的能力。

  • 小學(xué)美術(shù)人教版三年級下冊《第1課水墨游戲》教學(xué)設(shè)計說課稿

    小學(xué)美術(shù)人教版三年級下冊《第1課水墨游戲》教學(xué)設(shè)計說課稿

    3重點難點教學(xué)重點:認(rèn)識、掌握中國畫工具材料的使用。用筆、用墨、用水的訓(xùn)練。教學(xué)難點:焦、濃、重、淡、清的正確畫法,嘗試用此技法畫一個水墨小品。教學(xué)活動活動1【導(dǎo)入】一、師生問候,引入新課。1、檢查學(xué)生用具準(zhǔn)備情況,提醒大家管理好自己的水和墨汁,別污染自己或他人衣服。2、提問引入:你自己最喜歡用什么畫筆作畫?引入水墨畫概念。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.3《等比數(shù)列》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.3《等比數(shù)列》教學(xué)設(shè)計

    課題序號6-3授課形式講授與練習(xí)課題名稱等比數(shù)列課時2教學(xué) 目標(biāo)知識 目標(biāo)理解并掌握等比數(shù)列的概念,掌握并能應(yīng)用等比數(shù)列的通項公式及前n項和公式。能力 目標(biāo)通過公式的推導(dǎo)和應(yīng)用,使學(xué)生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認(rèn)識問題、分析問題、解決問題的一般思路和方法 。素質(zhì) 目標(biāo)通過對等比數(shù)列知識的學(xué)習(xí),培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、正確總結(jié)的科學(xué)思維習(xí)慣和嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。教學(xué) 重點等比數(shù)列的概念及通項公式、前n項和公式的推導(dǎo)過程及運用。教學(xué) 難點對等比數(shù)列的通項公式與求和公式變式運用。教學(xué)內(nèi)容 調(diào)整無學(xué)生知識與 能力準(zhǔn)備數(shù)列的概念課后拓展 練習(xí) 習(xí)題(P.21): 3,4.教學(xué) 反思 教研室 審核

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計

    課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點用適當(dāng)?shù)姆柋硎军c、線、面之間的關(guān)系;會用斜二測畫法畫立體圖形的直觀圖教學(xué)難點從平面幾何向立體幾何的過渡,培養(yǎng)學(xué)生的空間想象能力.更新補充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動手畫,動腦想,但立體幾何的語言及想象能力差

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.2《等差數(shù)列》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.2《等差數(shù)列》教學(xué)設(shè)計

    系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學(xué)目標(biāo)1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應(yīng)用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學(xué)生分析、比較、歸納的邏輯思維能力. . 2. 3.教學(xué)重點等差數(shù)列的概念及其通項公式. 教學(xué)難點等差數(shù)列通項公式的靈活運用. 教學(xué)方法情境教學(xué)法、自主探究式教學(xué)方法教學(xué)器材及設(shè)備黑板、粉筆復(fù)習(xí)提問提問內(nèi)容姓名成績1.?dāng)?shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設(shè)計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習(xí)作業(yè)布置習(xí)題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學(xué)方法.充分利用現(xiàn)實情景,盡可能地增加教學(xué)過程的趣味性、實踐性.我再整個教學(xué)中強調(diào)學(xué)生的主動參與,讓學(xué)生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而達(dá)到使學(xué)生既獲得知識又發(fā)展智能的目的.

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關(guān)鍵點的橫坐標(biāo),分別令,,,,,求出對應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對應(yīng)五個關(guān)鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點 15

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上?!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機變量及其分布》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機變量及其分布》教學(xué)設(shè)計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實驗】 商店進(jìn)了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質(zhì)量是研究對象的總體,每個蘋果的質(zhì)量是研究的個體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績,指出其中的總體與個體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績是總體,每一個學(xué)生的數(shù)學(xué)期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個體. 說明 強調(diào) 引領(lǐng) 觀察 思考 主動 求解 通過例題進(jìn)一步領(lǐng)會 35

  • 點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    傾斜角與斜率教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標(biāo)為(0,5/3).

  • 兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩直線的交點坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計

    導(dǎo)語在必修第一冊中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內(nèi)的平均速度v ?近似的描述它的運動狀態(tài)。

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時,所需進(jìn)化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

上一頁123...212223242526272829303132下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!