提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

學校教學常規(guī)管理制度(完整)

  • 人教版高中數(shù)學選修3成對數(shù)據(jù)的相關關系教學設計

    人教版高中數(shù)學選修3成對數(shù)據(jù)的相關關系教學設計

    由樣本相關系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關,且相關程度很強。脂肪含量與年齡變化趨勢相同.歸納總結(jié)1.線性相關系數(shù)是從數(shù)值上來判斷變量間的線性相關程度,是定量的方法.與散點圖相比較,線性相關系數(shù)要精細得多,需要注意的是線性相關系數(shù)r的絕對值小,只是說明線性相關程度低,但不一定不相關,可能是非線性相關.2.利用相關系數(shù)r來檢驗線性相關顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點圖,判斷成對樣本數(shù)據(jù)是否線性相關,并通過樣本相關系數(shù)推斷居民年收入與A商品銷售額的相關程度和變化趨勢的異同.

  • 人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設計

    人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設計

    新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設自變量x從x_0變化到x_0+ ?x ,相應地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 人教版高中數(shù)學選修3離散型隨機變量及其分布列(1)教學設計

    人教版高中數(shù)學選修3離散型隨機變量及其分布列(1)教學設計

    4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結(jié)果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.

  • 直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

  • 直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中數(shù)學選擇性必修二函數(shù)的單調(diào)性(1)  教學設計

    人教版高中數(shù)學選擇性必修二函數(shù)的單調(diào)性(1) 教學設計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教版高中數(shù)學選修3離散型隨機變量及其分布列(2)教學設計

    人教版高中數(shù)學選修3離散型隨機變量及其分布列(2)教學設計

    溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結(jié)果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

  • 小學美術人教版四年級上冊《第9課彩墨世界》教學設計說課稿模板

    小學美術人教版四年級上冊《第9課彩墨世界》教學設計說課稿模板

    2學情分析四年級學生處于兒童期的后期階段,生理和心里變化很大,是培養(yǎng)學習能力、情緒能力、意志能力和學習習慣的最佳時期。學生已經(jīng)從被動學習向主動學習轉(zhuǎn)變,有了自己的想法。在繪畫表達方面,已初步掌握了中國畫工具和材料的使用方法,初步學會用寫生的方式表現(xiàn)風景。在此基礎上讓學生依據(jù)寫生的鴨子形象,嘗試用水墨技法來表現(xiàn),回顧已學知識,為新知學習做好鋪墊。

  • 小學美術人教版一年級下冊《第3課花地毯》教學設計

    小學美術人教版一年級下冊《第3課花地毯》教學設計

    2學情分析一年級的學生,雖然經(jīng)過了一學期學習但好習慣還沒養(yǎng)成,課上易失去注意力等。因此我在教學中要關注學生的注意力,抓住學生的興趣點加以引導、啟發(fā),說易懂的語言,練學生易學的方法,讓學生在寬松融洽的氣氛快樂的學習。a教學重點教學重點:以最簡單的方式讓學生了解圖案的基本構(gòu)成特點。學時難點把握個人創(chuàng)作與集體合作的關系。

  • 小學美術人教版四年級上冊《第7課今天我值日》教學設計說課稿

    小學美術人教版四年級上冊《第7課今天我值日》教學設計說課稿

    一、談話導入:師:咱們班今天是誰的值日生???學生反饋(教師請值日的學生回答并根據(jù)班級衛(wèi)生情況做出簡單評價或表揚。)師:今天的值日生表現(xiàn)非常棒,值日工作做的很好,希望其他同學向他(她)學習。那你們想不想把我們值日時的場面畫在紙上呢?今天就讓我們來學習第七課《今天我值日》。(打開課件)生:學生打開課本第七課《今天我值日》。

  • 小學美術人教版六年級下冊《第10課宇宙之旅》教學設計

    小學美術人教版六年級下冊《第10課宇宙之旅》教學設計

    2重點難點教學重點:1.了解中國航天知識和掌握飛船的主要結(jié)構(gòu)。2.利用各種廢棄物制作各種宇宙飛船。教學難點:學習利用各種廢棄物制作宇宙飛船,培養(yǎng)學生養(yǎng)成收集有關宇宙飛船的信息與資料的習慣教學活動活動1【導入】導入新課.師:今年11月1日5時58分10秒神舟八號的發(fā)射成功,再一次圓了中國人民的千年飛天夢。真讓人振奮?。『?,現(xiàn)在讓我們一起回到那激動人心的時刻吧。教師播放在段有關“神州八號”載人飛船上天的影片,在播放過程中講解有關“神州八號”的發(fā)射情況。

  • 小學美術人教版二年級下冊《第2課重重疊疊》教學設計說課稿

    小學美術人教版二年級下冊《第2課重重疊疊》教學設計說課稿

    1.展示海洋魚類圖片,并導入課題。師:夏季炎熱的天氣已經(jīng)開始了,老師帶來了一份涼爽禮物想送大家,你們猜猜是什么呢?生:……師:想知道嗎?這份禮物就是幾張美麗的圖片,請看大屏幕:在深藍色的海底世界里,一群可愛的海洋魚在悠閑地游來游去,好涼快,好舒服呀。喜歡這個禮物嗎? 生:…… 師:喜歡呀,老師太高興了。同學們再來看一看,在這幾張漂亮的圖片里,除了讓我們感受到大海的涼爽和美麗之外,你還發(fā)現(xiàn)什么了嗎?

  • 小學美術人教版四年級下冊《第2課點的魅力2》教學設計說課稿

    小學美術人教版四年級下冊《第2課點的魅力2》教學設計說課稿

    一、導入新課上課,同學們好!今天的美術課和平時有點不一樣,主要有兩個方面,其一、教室里來了許多老師和我們一起來上這一堂美術課,大家用掌聲表示歡迎。其二、就是唐老師為大家?guī)砹艘晃恍』锇?,同學們肯定會喜歡上它的,大家看,它來了--展示課件動畫圖片和播放聲音,出現(xiàn)一個小圓點,(說話:同學們,大家好!我的名字叫小圓點,我喜歡穿各種色彩的衣服,我的本領可大啦!能大能小,位置和大小的變化還能給人產(chǎn)生不一樣的感覺!在生活中和美術作品中經(jīng)??梢砸姷轿业纳碛埃〈蠹叶挤Q我為魅力的小圓點呢?。?/p>

  • 小學美術人教版四年級上冊《第9課彩墨世界》教學設計說課稿

    小學美術人教版四年級上冊《第9課彩墨世界》教學設計說課稿

    2學情分析中國傳統(tǒng)繪畫,源遠流長,扎根于中華民族深厚的文化土壤之中。學習中國畫,對繼承和發(fā)揚我國民族繪畫,有著非常重要的意義和作用。本課是在學生以前學習中國畫基礎上的進一步學習。中國畫的門類很多,形式風格多樣,彩墨畫就是在水墨畫的基礎上發(fā)展而來的。而彩墨畫特殊的風格和表現(xiàn)方法,是兒童藝術活動充滿趣味的重要部分,用慣了彩筆、蠟筆的學生們對中國畫有著強烈的興趣。教材中選取了黃永玉先生的《紅荷圖》,畫面中一朵朵荷花色彩奔放,線條樸拙生動,墨色在畫面中自然融合,層次分明。作品中的荷花一改往日中國畫清新淡雅的風格,嬌艷欲滴的色彩讓人為之傾倒。此外,教材中精選的朱德群的《無題》、何韻蘭的《綠殤》,也較好地展現(xiàn)了中國畫的筆墨及用色特點。墨的濃淡干濕、墨色的融合交錯、運筆的輕重緩急,會產(chǎn)生豐富的畫面效果。另外,教師也可讓學生通過教科書中的技法圖來進一步了解認識彩墨畫。

  • 小學美術人教版四年級上冊《第10課我是汽車設計師》教學設計說課稿

    小學美術人教版四年級上冊《第10課我是汽車設計師》教學設計說課稿

    活動1【導入】激趣觀看動畫《汽車總動員》片斷。看看里面的角色都是什么?(各種各樣的小汽車)在這部動畫片里,所有的汽車都是有生命、有個性的。同學們想不想擁有一輛屬于自己的、有個性的小汽車呢?出示課題——我是汽車設計師活動2【講授】新授1、PPT出示“奔馳一號”。1886年,世界上出現(xiàn)了第一輛汽車,它是在三輪車的基礎上加上了發(fā)動機,從此,汽車大大方便了人們的生活,人們命名它為奔馳一號。PPT出示解放汽車。時間飛逝,來到了1956年,中國的第一輛解放牌汽車誕生了,它和奔馳一號相比先進多了。

  • 小學美術人教版四年級下冊《第16課千姿百態(tài)的帽子》教學設計說課稿

    小學美術人教版四年級下冊《第16課千姿百態(tài)的帽子》教學設計說課稿

    1、通過欣賞各式各樣的帽子的基本結(jié)構(gòu)和作用。了解帽子制作的基本過程。2、通過教學是學生初步掌握裝飾的基本方法(折、剪貼、插接、鏤空等),提高他們的語言表達能力。3、教師鼓勵學生積極參與游戲和制作,努力使自己的帽子與眾不同,體驗制作過程的樂趣。3學情分析從學生掌握知識的角度看,他們已經(jīng)掌握了基本的手工制作方法,而本學期學生通過了前面的剪紙的練習,這使他們的動手能力進一步提高,因此為本課打下了良好的基礎。從學生的特征看,這個年齡段的孩子對手工有著濃厚的興趣,喜歡嘗試制作新奇的東西。但部分基礎差的同學缺乏耐性和信心。教師對于這種情況,可利用優(yōu)秀作品為參照物激發(fā)其靈感,鼓勵創(chuàng)作。

上一頁123...222324252627282930313233下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!