北京的商業(yè)中心分布和變化大致分三個階段:鐘鼓樓市場、三足鼎立格局形成、環(huán)路沿線商業(yè)中心出現(xiàn)。相對應(yīng)的交通變化,鐘鼓樓市場衰退與大運河運輸?shù)匚凰ヂ?、運輸方式的變化密切相關(guān),后兩個階段與城市交通干線形態(tài)變化緊密聯(lián)系。3.交通線路的改變與集鎮(zhèn)的繁榮或衰落。有的集鎮(zhèn)因位于河道航運的終點而商業(yè)繁盛;當(dāng)險灘被清除,航道向前延伸時,集鎮(zhèn)的這種集散轉(zhuǎn)運地位隨之消失,商業(yè)逐漸衰落。例如:陜西省勉縣的長林鎮(zhèn)完全退化為單純的居民點?!菊n堂小結(jié)】今天這節(jié)課我們主要學(xué)習(xí)了交通布局變化帶來的對聚落形態(tài)的影響和對商業(yè)網(wǎng)點分布的影響。請同學(xué)們將今天所學(xué)的知識結(jié)合我們的生活實際,能對本地區(qū)的交通發(fā)展帶來的變化有所了解,為今后家鄉(xiāng)發(fā)展獻計獻策。
思考:結(jié)合資料,看看“廣鋼”的搬遷還考慮到什么因素?主要從誰的角度去考慮?展示資料:廣鋼建于1958年,由于城市化進程的加快,原來地處偏僻的廣鋼一帶現(xiàn)已成鬧市,廣鋼因此給周邊帶來了許多不便,并屢被投訴,投訴的主要內(nèi)容是煙氣、粉塵超標(biāo)。近日,《珠三角環(huán)境保護規(guī)劃綱要(草案)》(以下簡稱《綱要》)正式提交省人大常委會審議,按照《綱要》要求,2010年前,廣東省將關(guān)、停、并、轉(zhuǎn)、遷位于城市中心區(qū)高能耗、重污染的工業(yè)企業(yè)。學(xué)生討論:環(huán)保要素、政策要素……從市民、政府等社會角度去考慮板書:2、環(huán)保要素 3、政策的變化小結(jié):影響工業(yè)區(qū)位選擇的因素很多,不同的工業(yè)區(qū)位選擇要考慮的主導(dǎo)因素可能是一個或幾個,應(yīng)因地制宜,具體分析。并且影響區(qū)位選擇的因素隨著社會的發(fā)展而變化;社會、環(huán)境需要對工業(yè)區(qū)位也有一定的影響力。所以工業(yè)區(qū)位選擇是復(fù)雜的,應(yīng)綜合考慮各種因素,以取得最大的經(jīng)濟、社會、環(huán)境綜合效益。學(xué)生活動:計算機模擬工業(yè)選址,看誰是最英明的決策者(通過實踐應(yīng)用讓學(xué)生感受到工業(yè)的區(qū)位選擇應(yīng)綜合考慮)
⑴ 原料、燃料對工業(yè)區(qū)位的影響逐漸減弱,市場對工業(yè)區(qū)位的影響逐漸加強; ⑵交通運輸條件對工業(yè)具有很大的吸引力,在沿海沿江港口、鐵路樞紐、高速公路沿線形成工業(yè)區(qū);⑶信息通信網(wǎng)絡(luò)的通達性作為工業(yè)區(qū)位的重要性越來越突出;⑷工業(yè)對勞動力技能的要求逐漸增強。再次顯示上表最后一項“各因素的發(fā)展變化”。由工業(yè)生產(chǎn)的一般過程中可以知道,工廠產(chǎn)出產(chǎn)品的同時,也產(chǎn)出廢氣、廢水、廢渣。這些廢棄物排入環(huán)境,會造成環(huán)境污染,危害人們的身體健康。隨著人們環(huán)境意識的增強,環(huán)境質(zhì)量已成為重要的區(qū)位因素。在工廠的區(qū)位選擇時,應(yīng)以不污染當(dāng)?shù)丨h(huán)境為佳,進行合理選擇。讀課本61頁圖4.6污染嚴(yán)重工業(yè)的區(qū)位選擇,思考以下問題:1、嚴(yán)重污染空氣的工廠布局時應(yīng)考慮那些因素?2、嚴(yán)重污染水源的工廠布局時應(yīng)考慮那些因素?3、對環(huán)境質(zhì)量要求高的工廠布局時應(yīng)考慮那些因素?教師解析:對這一部分知識需要強記。講解要注意盛行風(fēng)向,需結(jié)合必修一氣候一節(jié)將難點突破,可分中國大部分地區(qū)、西歐、印度半島等不同區(qū)域進行講解以加深印象。
2.音響生產(chǎn)的工業(yè)集聚有哪些優(yōu)勢?點撥:可以加強各企業(yè)間的信息交流和技術(shù)協(xié)作,降低中間產(chǎn)品的運輸費用和能源消耗,進而降低生產(chǎn)成本,提高生產(chǎn)效率和利潤,取得規(guī)模效益。3.根據(jù)惠州音響零件的來源百分比,說明惠州音響零件供應(yīng)廠家的地域分布有什么規(guī)律。點撥:距離遞減規(guī)律,距離惠州音響整機組裝廠越近的地區(qū)零件來源所占比例越高。三)工業(yè)地域工業(yè)聯(lián)系—--------- 工業(yè)集聚------------工業(yè)地域工業(yè)地域:工業(yè)集聚而形成的地域稱之為工業(yè)地域。1.工業(yè)地域形成的兩種情況⑴自發(fā)形成的工業(yè)地域: 以生產(chǎn)工序上的工業(yè)聯(lián)系為基礎(chǔ),以降低生產(chǎn)成本為目的。⑵規(guī)劃建設(shè)的工業(yè)地域:如我國許多地方的經(jīng)濟技術(shù)開發(fā)區(qū):①把生產(chǎn)上有投入 產(chǎn)出聯(lián)系密切的工廠布局在一起。②先建成基礎(chǔ)設(shè)施,再吸引投資者建廠,形成空間和信息共同利用的工業(yè)聯(lián)系。我國許多地方的經(jīng)濟技術(shù)開發(fā)區(qū),就是利用這一原理建成的。2.兩類不同性質(zhì)的工業(yè)地域
1、 前提條件:①環(huán)境幾乎一樣的平原地區(qū),人口分布均勻2、 ②區(qū)域的運輸條件一致,影響運輸?shù)奈┮灰蛩厥蔷嚯x。城市六邊形服務(wù)范圍形成過程。(理解)a.當(dāng)某一貨物的供應(yīng)點只有少數(shù)幾個時,為了避免競爭、獲取最大利潤,供應(yīng)點的距離不會太近,它們的服務(wù)范圍都是圓形的。 b.在利潤的吸引下,不斷有新的供應(yīng)點出現(xiàn),原有的服務(wù)范圍會因此而縮小。這時,該貨物的供應(yīng)處于飽和。每個供應(yīng)點的服務(wù)范圍仍是圓形的,并彼此相切c.如果每個供應(yīng)點的服務(wù)范圍都是圓形相切卻不重疊的話,圓與圓之間就會存在空白區(qū)。這里的消費者如果都選擇最近的供應(yīng)點來尋求服務(wù)的話,空白區(qū)又可以分割咸三部分,分別屬于三個離其最近的供應(yīng)點。[思考]①圖2.15中城市有幾個等級?②找出表示每一等級六邊形服務(wù)范圍的線條顏色?③敘述不同等級城市之間服務(wù)范圍及其相互關(guān)系?3、理論基礎(chǔ):德國南部城市4、意義:運用這種理論來指導(dǎo)區(qū)域規(guī)劃、城市建設(shè)和商業(yè)網(wǎng)點的布局。1、 應(yīng)用——“荷蘭圩田居民點的設(shè)置”。
學(xué)生探究案例:找出不同等級城市的數(shù)目與城鎮(zhèn)級別的關(guān)系、城鎮(zhèn)的分布與城鎮(zhèn)級別的關(guān)系并試著解釋原因。在此基礎(chǔ)上,指導(dǎo)學(xué)生一步步閱讀書上的閱讀材料,首先說明這是德國著名的經(jīng)濟地理學(xué)家克里斯泰勒對德國南部城市等級體系研究得出的中心地理論,他是在假設(shè)土壤肥力相等、資源分布均勻、沒有邊界的平原上,交通條件一致、消費者收入及需求一致、人們就近購買貨物和服務(wù)的情況下得出的理想模式。然后指導(dǎo)學(xué)生閱讀圖2.14下文字說明,理解城市六邊形服務(wù)范圍形成過程。指導(dǎo)學(xué)生讀圖2.15,找出圖中城市的等級、每一等級六邊形服務(wù)范圍并敘述不同等級城市之間服務(wù)范圍及其相互關(guān)系,從而得出不同等級城市的空間分布規(guī)律,六邊形服務(wù)范圍,層層嵌套的理論模式。給出荷蘭圩田空白圖,讓學(xué)生應(yīng)用上面的理論規(guī)劃設(shè)計居民點并說出理由,再和教材上的規(guī)劃進行對照。然后給出長三角地區(qū)城市分布圖和各城市人口數(shù),讓學(xué)生對這些城市進行分級,概括每一級城市的服務(wù)功能、統(tǒng)計每一等級城市的數(shù)目以及彼此間的平均距離,總結(jié)城市等級與服務(wù)范圍、空間分布的關(guān)系?
提問:城市環(huán)境污染源主要有哪些?有些同學(xué)基本同意自行車多是加劇南京空氣污染的間接原因,你同意他們的觀點嗎?在學(xué)生回答的基礎(chǔ)上,教師進行歸納小結(jié):工業(yè)和交通是城市環(huán)境的主要污染源。而自行車是一種綠色交通工具,既環(huán)保又經(jīng)濟。只有當(dāng)它在某些機動車和非機動車不分的地段,影響車輛行駛速度的時候,它才可能成為加劇空氣污染的間接原因。問:那我們針對交通工具對環(huán)境造成的影響,有什么解決方法嗎?歸納小結(jié):? 實施減少汽車尾氣污染的技術(shù)措施? 加強道路綠化? 合理規(guī)劃城市道路,提高車速? 制定相關(guān)法規(guī)嚴(yán)禁各種車輛違規(guī)鳴喇叭? 在噪音嚴(yán)重的地區(qū)設(shè)置先進的隔音設(shè)施總結(jié):通過前面的分析我們知道了自行車過多并不是造成北京交通擁擠的主要原因,但自行車多并且不遵守交通規(guī)則的確是造成交通擁堵的一個原因。從這方面來講,在一些混合車道地段,自行車是造成空氣污染加劇的間接原因。那么在北京到底是應(yīng)該鼓勵自行車的發(fā)展還是限制自行車的發(fā)展呢?
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和
情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
五. 班會目標(biāo): 1. 讓同學(xué)們深入了解“三愛三節(jié)”的具體含義?! ?. 教導(dǎo)學(xué)生如何踐行“三愛三節(jié)”?! ?. 通過主題班會的學(xué)習(xí),培養(yǎng)學(xué)生良好的行為習(xí)慣,使“三愛三節(jié)”真正的融入到以后的學(xué)習(xí)生活中。 4. 利用主題班會普及“三節(jié)”小知識?! ×? 班會準(zhǔn)備: 1. 班干部負(fù)責(zé)班會黑板裝飾,主要體現(xiàn)“三愛三節(jié)”的主題?! ?. 提前通知學(xué)生通過詢問、上網(wǎng)、看書等,收集節(jié)水,節(jié)糧,節(jié)電小妙招?! ?. 將班級劃分成小組,選出發(fā)言人,便于班會進行過程中匯總小組意見發(fā)言。
一、設(shè)計思想通過本節(jié)教學(xué),不但要使學(xué)生認(rèn)識掌握勻變速直線運動的規(guī)律,而且要通過對這問題的研究,使學(xué)生了解和體會物理學(xué)研究問題的一個方法,圖象、公式、以及處理實驗數(shù)據(jù)的方法等。這一點可能對學(xué)生更為重要,要通過學(xué)習(xí)過程使學(xué)生有所體會。本節(jié)在內(nèi)容的安排順序上,既注意了科學(xué)系統(tǒng),又注意學(xué)生的認(rèn)識規(guī)律。講解問題從實際出發(fā),盡量用上一節(jié)的實驗測量數(shù)據(jù)。運用圖象這種數(shù)學(xué)工具,相對強調(diào)了圖象的作用和要求。這是與以前教材不同的。在現(xiàn)代生產(chǎn)、生活中,圖象的運用隨處可見,無論學(xué)生將來從事何種工作,掌握最基本的應(yīng)用圖象的知識,都是必須的。學(xué)生在初學(xué)時往往將數(shù)學(xué)和物理分割開來,不習(xí)慣或不會將已學(xué)過的數(shù)學(xué)工具用于物理當(dāng)中。在教學(xué)中應(yīng)多在這方面引導(dǎo)學(xué)生。本節(jié)就是一個較好的機會,將圖象及其物理意義聯(lián)系起來。
一、設(shè)計思想通過本節(jié)教學(xué),不但要使學(xué)生認(rèn)識掌握勻變速直線運動的規(guī)律,而且要通過對這問題的研究,使學(xué)生了解和體會物理學(xué)研究問題的一個方法,圖象、公式、以及處理實驗數(shù)據(jù)的方法等。這一點可能對學(xué)生更為重要,要通過學(xué)習(xí)過程使學(xué)生有所體會。本節(jié)在內(nèi)容的安排順序上,既注意了科學(xué)系統(tǒng),又注意學(xué)生的認(rèn)識規(guī)律。講解問題從實際出發(fā),盡量用上一節(jié)的實驗測量數(shù)據(jù)。運用圖象這種數(shù)學(xué)工具,相對強調(diào)了圖象的作用和要求。這是與以前教材不同的。在現(xiàn)代生產(chǎn)、生活中,圖象的運用隨處可見,無論學(xué)生將來從事何種工作,掌握最基本的應(yīng)用圖象的知識,都是必須的。學(xué)生在初學(xué)時往往將數(shù)學(xué)和物理分割開來,不習(xí)慣或不會將已學(xué)過的數(shù)學(xué)工具用于物理當(dāng)中。在教學(xué)中應(yīng)多在這方面引導(dǎo)學(xué)生。本節(jié)就是一個較好的機會,將圖象及其物理意義聯(lián)系起來。
一、教學(xué)目標(biāo)1.知識與技能:(1)知道勻速直線運動的位移x=υt對應(yīng)著 圖象中的矩形面積.(2)掌握勻變速直線運動的位移與時間關(guān)系的公式 ,及其簡單應(yīng)用.(3)掌握勻變速直線運動的位移與速度關(guān)系的公式 ,及其簡單應(yīng)用.2.過程與方法:(1)讓學(xué)生初步了解探究學(xué)習(xí)的方法.(2)培養(yǎng)學(xué)生運用數(shù)學(xué)知識-----函數(shù)圖象的能力.(3)培養(yǎng)學(xué)生運用已知結(jié)論正確類比推理的能力.3.情感態(tài)度與價值觀:(1)培養(yǎng)學(xué)生認(rèn)真嚴(yán)謹(jǐn)?shù)目茖W(xué)分析問題的品質(zhì).(2)從知識是相互關(guān)聯(lián)、相互補充的思想中,培養(yǎng)學(xué)生建立事物是相互聯(lián)系的唯物主義觀點.(3)培養(yǎng)學(xué)生應(yīng)用物理知識解決實際問題的能力.二、教學(xué)重點、難點1.教學(xué)重點及其教學(xué)策略:重點:(1)勻變速直線運動的位移與時間關(guān)系的公式 及其應(yīng)用.(2)勻變速直線運動的位移與速度關(guān)系的公式 及其應(yīng)用.教學(xué)策略:通過思考討論和實例分析來加深理解.