二、今后工作打算一是探索農(nóng)村產(chǎn)權(quán)規(guī)范流轉(zhuǎn)和交易。依托農(nóng)村集體經(jīng)濟(jì)組織建立符合農(nóng)村實際需要的產(chǎn)權(quán)流轉(zhuǎn)交易市場,開展成員股權(quán)、農(nóng)村承包土地經(jīng)營權(quán)、集體林權(quán)、“四荒”地使用權(quán)、農(nóng)業(yè)類知識產(chǎn)權(quán)、農(nóng)村集體經(jīng)營性資產(chǎn)出租、抵押等流轉(zhuǎn)交易。根據(jù)農(nóng)村產(chǎn)權(quán)要素性質(zhì)、流轉(zhuǎn)范圍和交易需要,制定產(chǎn)權(quán)流轉(zhuǎn)交易管理辦法,健全市場交易規(guī)則,完善運行機(jī)制,實行公開交易,加強(qiáng)農(nóng)村產(chǎn)權(quán)流轉(zhuǎn)交易服務(wù)和監(jiān)督管理。二是吸收更多的農(nóng)民股權(quán)。探索支持引導(dǎo)村民依法自愿將自己的房屋入股到村股份經(jīng)濟(jì)合作社統(tǒng)一運營,群眾享受分紅。目前,群眾的房屋出租,主要是個人與個人之間的協(xié)議關(guān)系,會對承租人的服務(wù)及管理造成缺位。入股到村股份經(jīng)濟(jì)合作社,可實現(xiàn)統(tǒng)一運營,年底按股權(quán)領(lǐng)取分紅,創(chuàng)造更大的效益,提供更好的服務(wù)。同時,也便于村上管理,增強(qiáng)其抵御自然風(fēng)險的能力。
一、描述圓周運動的物理量 探究交流 打籃球的同學(xué)可能玩過轉(zhuǎn)籃球,讓籃球在指尖旋轉(zhuǎn),展示自己的球技,如圖5-4-1所示.若籃球正繞指尖所在的豎直軸旋轉(zhuǎn),那么籃球上不同高度的各點的角速度相同嗎?線速度相同嗎? 【提示】 籃球上各點的角速度是相同的.但由于不同高度的各點轉(zhuǎn)動時的圓心、半徑不同,由v=ωr可知不同高度的各點的線速度不同.
(一)說教材 《虞美人》選自高中語文統(tǒng)編版必修上冊·古詩詞誦讀?!队菝廊恕肥窃~中的代表作品,是李煜生命中最為重要的一首詞作,極具藝術(shù)魅力,對于陶冶學(xué)生的情操,豐富和積淀學(xué)生的人文素養(yǎng)意義非凡。(二)說學(xué)情總體來說,所教班級的學(xué)生基礎(chǔ)不強(qiáng),學(xué)習(xí)意識略有偏差,在學(xué)習(xí)過程中需要教師深入淺出,不斷創(chuàng)造動口、動手、動腦的機(jī)會,他們才能更好地達(dá)成教學(xué)目標(biāo)。(三)說教學(xué)目標(biāo)根據(jù)教學(xué)內(nèi)容和學(xué)情分析,確定如下教學(xué)目標(biāo)(1)探究這首詞的內(nèi)涵,了解李煜及其創(chuàng)作風(fēng)格。(2)通過對本詞的品析,提高詞的鑒賞能力。(3)通過對比閱讀,體會李煜詞 “赤子之心” 、“以血書者”的特色,體味其深沉的亡國之恨和故國之思。
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
1.革命遺址、遺跡星羅棋布。XX作為XX省紅色資源最為豐富的地區(qū)之一,現(xiàn)有革命遺址(舊址)XX處,烈士紀(jì)念設(shè)施XX個,其中X縣有革命遺址XX處,烈士紀(jì)念設(shè)施XX個。XX縣革命遺址類型多樣,數(shù)量眾多,分布零散,既有重要歷史事件和重要機(jī)構(gòu)舊址、革命戰(zhàn)斗遺跡,又有革命領(lǐng)導(dǎo)人故居,紀(jì)念建筑物,部分革命遺址在修繕保護(hù)的基礎(chǔ)上已經(jīng)開發(fā)利用,如XX等革命遺址,已經(jīng)成為開展愛國主義教育的生動素材。
各位嘉賓、各位朋友! **是我國東部沿海的人口大市、經(jīng)濟(jì)大市、文化大市、旅游大市。作為人口大市,**戶籍、常住人口“雙過億”,勞動年齡人口****萬,技能人才****萬,正在由人口大市向人才強(qiáng)市轉(zhuǎn)變。作為經(jīng)濟(jì)大市,**經(jīng)濟(jì)總量居全國第*,20**年實現(xiàn)地區(qū)生產(chǎn)總值****億元人民幣,人均超過****美元。今年以來,我們高效統(tǒng)籌疫情防控和經(jīng)濟(jì)社會發(fā)展,疫情防控形勢持續(xù)趨穩(wěn)向好,全市經(jīng)濟(jì)運行保持穩(wěn)中向好、進(jìn)中提質(zhì)的良好態(tài)勢。一季度,地區(qū)生產(chǎn)總值同比增長*%。1-5月,規(guī)上工業(yè)增加值增長*%,固定資產(chǎn)投資增長*%,一般公共預(yù)算收入同口徑增長*%,進(jìn)出口總額增長**%,實際使用外資同比增長*%,發(fā)展的動力活力更加充沛強(qiáng)勁?! ∽鳛槲幕笫小⒙糜未笫?,**的文化旅游資源十分豐厚,泰山在這里崛起、黃河在這里入海、孔子在這里誕生,“一山一水一圣人”享譽世界,“好客**”的旅游品牌家喻戶曉。賓至**如歸家,客到齊魯似還鄉(xiāng)。在這里,我們熱情邀請朋友們到**做客,來一場說走就走的旅行,親身體驗“好客**”的獨特魅力。 讓我們相約“好客**”,在踏古尋蹤中品味“孔孟之鄉(xiāng)、禮儀之邦”的燦爛文化之美。**歷史悠久、文化厚重,是聞名遐邇的“文化圣地”。這里文明發(fā)源、底蘊深厚,是中華文明的重要發(fā)祥地之一,后李文化、北辛文化、大汶口文化、龍山文化等,構(gòu)成早期華夏文明的主體部分。這里文化燦爛、圣賢輩出,是儒家文化的發(fā)源地,齊魯文化、東夷文化、海岱文化交相輝映,“至圣”孔子、“亞圣”孟子、“兵圣”孫子、“科圣”墨子、“工圣”魯班等眾多圣哲誕生于此。這里文脈綿長、根深葉茂,這片土地上的優(yōu)秀傳統(tǒng)文化,興于制禮作樂、“郁郁乎文”的西周,成于刪述六經(jīng)、設(shè)教杏壇的春秋,盛于稷下學(xué)宮、百家爭鳴的戰(zhàn)國,傳于一統(tǒng)六合、“獨尊儒術(shù)”的秦漢,賡續(xù)于魏晉隋唐、宋元明清的后世,諸葛亮、王羲之、劉勰、顏真卿、張擇端、李清照、辛棄疾、蒲松齡等大批文人名士,獨領(lǐng)風(fēng)騷、粲然千古。濡染齊風(fēng)魯韻、追慕圣哲先賢,“好客**”的文化之旅,定會讓你文質(zhì)彬彬、收獲滿滿。
發(fā)展壯大村集體經(jīng)濟(jì)是統(tǒng)籌城鄉(xiāng)發(fā)展、建設(shè)新農(nóng)村的重要支撐。推進(jìn)新農(nóng)村建設(shè),村集體經(jīng)濟(jì)是重要基礎(chǔ)。實踐證明,村集體經(jīng)濟(jì)發(fā)展比較好的地方,新農(nóng)村建設(shè)步伐就快,農(nóng)村面貌變化就大,群眾得到的實惠就多。只有不斷發(fā)展壯大村集體經(jīng)濟(jì),才能進(jìn)一步增強(qiáng)村級組織服務(wù)功能。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進(jìn)行簡單的應(yīng)用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡、求值以及證明,進(jìn)而進(jìn)行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運算:三角函數(shù)式的求值.
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實際問題;5.數(shù)學(xué)運算:能夠正確運用復(fù)數(shù)三角形式計算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認(rèn)識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認(rèn)識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認(rèn)識;b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關(guān)的問題.課程目標(biāo)1、通過實際問題了解對數(shù)函數(shù)的實際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)對數(shù)函數(shù)概念.重點:理解對數(shù)函數(shù)的概念和意義;難點:理解對數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長時間呢?進(jìn)一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運算一并集、交集、補(bǔ)集。是對集合基木知識的深入研究。在此,通過適當(dāng)?shù)膯栴}情境,使學(xué)生感受、認(rèn)識并掌握集合的三種基本運算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補(bǔ)集的含義,會求給定子集的補(bǔ)集;C.能使用 圖表示集合的關(guān)系及運算。 1.數(shù)學(xué)抽象:集合交集、并集、補(bǔ)集的含義;2.數(shù)學(xué)運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運算。
集合的基本運算是人教版普通高中課程標(biāo)準(zhǔn)實驗教科書,數(shù)學(xué)必修1第一章第三節(jié)的內(nèi)容. 在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ). 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點.課程目標(biāo)1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補(bǔ)集的含義,能求給定集合的補(bǔ)集; 3. 能使用Venn圖表達(dá)集合的基本關(guān)系與基本運算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:并集、交集、全集、補(bǔ)集含義的理解;2.邏輯推理:并集、交集及補(bǔ)集的性質(zhì)的推導(dǎo);3.數(shù)學(xué)運算:求 兩個集合的并集、交集及補(bǔ)集,已知并集、交集及補(bǔ)集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補(bǔ)集的性質(zhì)列不等式組,此過程中重點關(guān)注端點是否含“=”及?問題;
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達(dá)集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點關(guān)注端點是否含“=”及 問題;5.數(shù)學(xué)建模:用集合思想對實際生活中的對象進(jìn)行判斷與歸類。
本節(jié)內(nèi)容是學(xué)生學(xué)習(xí)了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)內(nèi)容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)知識的基礎(chǔ),在教材中起承上啟下的作用。同時,它體現(xiàn)的數(shù)學(xué)思想與方法在整個中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。課程目標(biāo)1.理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用.2.會利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解同角三角函數(shù)基本關(guān)系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關(guān)系;3.數(shù)學(xué)運算:利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明重點:理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用; 難點:會利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明.