二、活動目標:1、認識5以內(nèi)的序數(shù),學(xué)習(xí)序數(shù)詞“第幾”。2、能從不同的方向找到物體排列的位置。3、發(fā)展觀察能力、判斷能力,提高動手操作能力。三、活動準備:1、有5層高的樓房背景圖一幅,幼兒熟悉的小動物5個,如小狗、小貓、小兔、小豬、小猴等。2、幼兒每人一份操作材料:5只不同的小動物,有5節(jié)車廂的火車或有5棵小樹的圖片等。
2、培養(yǎng)幼兒的觀察能力。準備:背景圖一張,貼絨教具:小鴨子6個,數(shù)字卡:“1——6”若干,一袋糖果,玩具熊一個。學(xué)具:糖果與盤子,數(shù)字卡“1——5”每人一套,操作卡每人一套?;顒舆^程:在音樂的伴奏下,老師抱著小熊開著汽車進課室。師:(出示小熊)小朋友們下午好,小熊聽說我們班的小朋友可聽話了,而且還特別的聰明能干,于是,小熊特意開著汽車給小朋友送來了一袋好東西,你們想不想知道小熊帶的是什么東西呢? 請一位小朋友來摸摸,不要出聲,讓他悄悄告訴下一個小朋友,依次類推,最后,請最后一個小朋友來告訴大家。
2、鼓勵幼兒能運用自己已有的經(jīng)驗,通過對圓和圓的不同狀態(tài)的想象與組合,創(chuàng)作出各種小動物的造型。 活動準備:1、會翻跟斗的圓圓一個、教師范例鏡框一幅。 2、各種大小顏色不同的圓若干、水彩筆、固體膠、幼兒用小鏡框人手一個。 活動過程:一、看看講講,尋找圓圓,體驗變身的圓圓◎ 重要提問:1、在我們生活中有哪些東西也是圓圓的?2、 “圓圓”在哪里?它變了以后又躲在哪里?3、教師追問:“半圓形或扇形還能變成什么?”教師小結(jié):原來,調(diào)皮的“圓圓”有時是圓圓的,當(dāng)它翻一個跟斗時,能讓自己變成半圓,如果翻兩個跟斗就能讓自己變成一把小扇子,“圓圓”的本領(lǐng)可大了。
2、繼續(xù)學(xué)習(xí)正確目測6以內(nèi)的數(shù)群。3、樂意主動的講述自己的操作過程和結(jié)果。活動準備:1、經(jīng)驗準備:幼兒已認識過數(shù)字,并樂意用目測數(shù)群的方法進行數(shù)數(shù)活動。2、物質(zhì)準備: (1)教具:分類底版,6以內(nèi)的實物卡片,相應(yīng)數(shù)量的數(shù)卡 ?。?)學(xué)具:聰明的玩家(分類底版,6以內(nèi)的各種實物卡片,相應(yīng)數(shù)(點)卡等) 給一樣多的發(fā)花(不同排列形式的實物操作卡,雪花片) 一樣多的放一起(6以內(nèi)不同排列形式的實物卡片)
2、培養(yǎng)幼兒的觀察力、判斷力和思維的敏捷性。3、學(xué)習(xí)9以內(nèi)數(shù)的點數(shù),按數(shù)取物,分類計數(shù)?! 。刍顒訙蕚洌?、大圖畫4幅,每幅畫有房子4間。塑料幾何圖形片若干。2、畫有9只小兔的背景圖1幅,分類計數(shù)表1張,磁性數(shù)字卡0——9,磁性黑板。3、玩具保齡球2袋。
2、通過游戲培養(yǎng)幼兒對數(shù)學(xué)活動的興趣;活動重點:復(fù)習(xí)認識以上三種圖形;活動難點:掌握以上三種圖形的特征;活動準備:用圓形、三角形、正方形拼成的小魚圖片,場地上畫三個大的圓形、三角形、正方形。
2.積極參與討論活動,大膽講述自己的意見?;顒訙蕚?6的分合卡片,分類圖一張。記錄單、記號筆幼兒人手一份。 活動過程:1、復(fù)習(xí)5以內(nèi)數(shù)的組成(1)游戲:碰球游戲前,由教師確定碰幾球,如碰5球。教師問:“嗨,嗨,我的1球碰幾球?”幼兒答:“嗨,嗨,我的1球碰4球?”速度可隨著幼兒的熟練程度逐漸加快。游戲先集體后個人。
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
(3)設(shè)點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計:(1) 引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時間;(2) 充分運用多媒體的優(yōu)勢進行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學(xué)生對比和探究。學(xué)生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
教學(xué)媒體設(shè)計充分利用多媒體教學(xué),將powerpoint、《幾何畫板》兩種軟件結(jié)合起來制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數(shù)圖像的動畫性,更加形象的反映出作圖的過程,增加數(shù)學(xué)的美感,激發(fā)學(xué)生作圖的興趣。教學(xué)評價設(shè)計本節(jié)課,我合理、充分利用了多媒體教學(xué)的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應(yīng)用,畫出了標準、動畫形式的二次函數(shù)的圖像,讓抽象思維不強的學(xué)生,更加形象的結(jié)合圖形,分析說出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想。為了突出重點,攻破難點,我要求學(xué)生“先觀察后思考”、“先做后說”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學(xué)過程中以學(xué)生為主體,老師起主導(dǎo)作用的教學(xué)原則。本節(jié)課,讓學(xué)生有觀察,有思考,有討論,有練習(xí),充分調(diào)動了學(xué)生的學(xué)習(xí)興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準備。
設(shè)計意圖這一組習(xí)題的設(shè)計,讓每位學(xué)生都參與,通過學(xué)生的主動參與,讓每一位學(xué)生有“用武之地”,深刻體會本節(jié)課的重要內(nèi)容和思想方法,體驗學(xué)習(xí)數(shù)學(xué)的樂趣,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導(dǎo)學(xué)生進行課堂小結(jié),給出下列提綱,并就學(xué)生回答進行點評。(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問題?(學(xué)生活動)學(xué)生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習(xí)8.4.41、2題(2)實踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計意圖通過讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時,在知識拓展時起激學(xué)生探究的熱情,讓每一個不同層次的學(xué)生都可以獲得成功的喜悅。
說教學(xué)難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學(xué)生的年齡和認知特點,教材中“圖形的放大與縮小”從對應(yīng)邊的比相等來進行安排,而對應(yīng)角的不變也是形狀不變必備的條件,是學(xué)生體會圖形的相似所必需的。學(xué)生在學(xué)習(xí)的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮小?)所以我把“學(xué)生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應(yīng)邊的比相等,對應(yīng)角不變)”做為本節(jié)課的難點。說教法、學(xué)法:通過直觀演示,情景激趣,結(jié)合生活讓學(xué)生形成感性認識;引導(dǎo)學(xué)生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學(xué)習(xí)、驗證等過程形成理性認識。教學(xué)過程:(略)
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
(2)請你思考:師:這樣就需要設(shè)計一張其他面值的郵票,如果最高的資費是6元,那么用3張郵票來支付時,面值對大的郵票是幾元?可增加什么面值的郵票?(學(xué)生分組討論設(shè)計思考)生:6元除以3元就是2元,可增加的郵票面值可為2.0元,2.4元或4.0元。(3)小結(jié):雖然滿足條件的郵票組合很多,但郵政部門在發(fā)行郵票時,還要從經(jīng)濟、合理等角度考慮。【設(shè)計意圖:大膽放手,讓學(xué)生參與數(shù)學(xué)活動。讓學(xué)生成為課堂的主體,讓他們在動手、動腦、動口的過程中學(xué)到知識和思維的方法,知識的獲得和學(xué)習(xí)方法的形成都是在學(xué)生“做”的過程中形成的。】四、鞏固深化:1、如果小明的爸爸要給小明回一封不足20g的信,他該貼多少錢的郵票?2、如果小明的好朋友要寄一封39g的信,他該貼多少錢的郵票?五、課后實踐:課后給你的親戚或者好朋友寄封信。
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標準角度為30°±1°,一名質(zhì)檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學(xué)的知識分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應(yīng)進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個數(shù)成比例,則應(yīng)滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉(zhuǎn)化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.
(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。