【類型二】 根據數(shù)軸求不等式的解關于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結:本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關于a的方程是解題關鍵.三、板書設計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎.在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.
通常購買同一品種的西瓜時,西瓜的質量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據體積公式求出即可;(2)根據(1)中的結果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結:本題能夠根據球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關鍵.
活動目標:1、感受生活中有規(guī)律的序列,產生對規(guī)律活動的興趣。2、能仔細觀察、主動探索,感知規(guī)律的主要特征。3、嘗試自創(chuàng)規(guī)律,發(fā)展幼兒的實際運用能力?;顒訙蕚洌?、有色彩排列出規(guī)律的衣服。2、可以串掛的小積木若干,穿掛用的繩子人手一根。3、生活中有規(guī)律事物的課件(照片以幼兒身邊場景為主)。
教學目標:1、使學生在已有的知識基礎上掌握除數(shù)是兩位數(shù)的除法2、學生通過解決實際問題探討口算方法,通過實踐練習活動熟悉、掌握用整十數(shù)除的口算方法。3、培養(yǎng)學生主動遷移知識的思維習慣。教學過程:(一)情境引入、教學新知1、讓學生看課本插圖,根據圖中的對話,完整地編一道應用題。生自由發(fā)言:國慶節(jié)很快就要到了,學校準備買一些氣球分給各個班級。如果用80個氣球,要給每班20個,可以分給幾個班?2、讓學生口算,并鼓勵算法多樣化,并讓學生說說你是怎么想的?80÷20=()個3、《做一做》練習90÷30=60÷30=80÷40=4、想一想:83÷20≈()80÷19≈(),這兩道題和例題有什么區(qū)別?聯(lián)系?能否用曾經學過的估算和今天剛學習的除法來解決?
2、積極參與,體驗造高樓的樂趣。準備:軟墊、紙磚、遮擋物、3只高矮不等的小猴、測量長度用的圓筒、橡皮筋、小鈴、工地數(shù)字號碼牌流程:一、小猴比高矮(理解物體要在同一水平面上才能比高矮。) 1、第一次比較:遮擋物下比高矮 導語:有幾只調皮的猴子要來比高矮了,看一看,有幾只小猴子?它們誰最高? 2、第二次比較:無遮擋物下比高矮 過渡:真得是這樣嗎?我們再來看一看。(拿去遮擋物) 提問:現(xiàn)在誰長得最高? C:穿紅衣服/藍衣服的猴子最高。 T:有的猴子站在磚頭上,有的沒有站在磚頭上,這樣不能比。到底誰最高?誰有好辦法來比一比?誰能從高到矮幫它們排一排位置? 小結:原來比高矮要站在同樣高的平地上面比,否則比出來的結果就會不準確。
解:方法一:因為DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因為DF∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因為DE∥BC,所以∠ADE=∠B.又因為DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結:求線段的長,常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個三角形就成了解題的關鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設計(1)相似三角形的定義:三角分別相等、三邊成比例的兩個三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗事物間特殊與一般的關系.讓學生經歷從實驗探究到歸納證明的過程,發(fā)展學生的合情推理能力,培養(yǎng)學生的觀察、動手探究、歸納總結的能力.
合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學生練習:1. 討論隨堂練 習第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習第2題六、小結本節(jié)主要學習了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):
三、總結規(guī)律、形成概念通過學生積極討論,充分調動了學生的積極參與學習,既發(fā)揮了學生學習的主動性,又培養(yǎng)了學生的發(fā)散性思維,引導學生總結出:有的分數(shù)可以化成有限小數(shù),有的分數(shù)不可以化成有限小數(shù),請同學們再看一看什么樣的分數(shù)可以化成有限小數(shù)?什么樣的分數(shù)不可以化成有限小數(shù)?啟發(fā)學生從分母的最小公倍數(shù)著手。 最后總結出:一個最簡分數(shù),如果分母中只含有素因數(shù)2和5,再無其它素因數(shù),那么這個分數(shù)就可以化成有限小數(shù),否則就不能化成有限小數(shù)。 例題2,請把下列小數(shù)化成分數(shù),說說你是怎樣把小數(shù)化成分數(shù)的? 0.06,0.4,1.8,2.45,1.465, 歸納:(學生為主,教師點撥)1、原來有幾位小數(shù),就在1后面寫幾個零作分母。原來的小數(shù)去掉小數(shù)點作分子。2、小數(shù)化成分數(shù)后,能約分的要約分。常用的因數(shù)是2和5。 對于小數(shù)如何化成分數(shù)的題目,課前了解到學生在小學時已學過把小數(shù)如何化成分數(shù)的方法,因而以學生練習為主,加以操練并鞏固,有錯誤的及時糾正。
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結:本題主要利用了“直角三角形兩銳角互余”的性質和三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.三、板書設計1.三角形的內角和定理:三角形的內角和等于180°.2.三角形內角和定理的證明3.直角三角形的性質:直角三角形兩銳角互余.本節(jié)課通過一段對話設置疑問,巧設懸念,激發(fā)起學生獲取知識的求知欲,充分調動學生學習的積極性,使學生由被動接受知識轉為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內角和是180°這一結論
解析:點E是BC︵的中點,根據圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.
四、教學設計反思這節(jié)內容是學生利用數(shù)形結合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應關系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖象的對應關系應讓學生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應讓學生自己得出.在得出結論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據學生狀況,教學設計也應做出相應的調整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數(shù)表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應的圖形具有什么特征呢?
探究點三:正比例函數(shù)的性質已知正比例函數(shù)y=-kx的圖象經過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。鍟O計1.函數(shù)與圖象之間是一一對應的關系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質:正比例函數(shù)的圖象是一條經過原點的直線.經歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應關系.
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經歷探索相似三角形的 性質的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設難點:用二次函數(shù)與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
由②得y=23x+23.在同一直角坐標系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結:用畫圖象的方法可以直觀地獲得問題的結果,但不是很準確.三、板書設計1.二元一次方程組的解是對應的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導學生自主學習探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應關系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應關系.進一步培養(yǎng)了學生數(shù)形結合的意識,充分提高學生數(shù)形結合的能力,使學生在自主探索中學會不同數(shù)學知識間可以互相轉化的數(shù)學思想和方法.
2. 在彈性限度內,彈簧的長度y(厘米)是所掛物體質量x(千克)的一次函數(shù).當所掛物體的質量為1千克時彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關系式,并求當所掛物體的質量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(2分鐘,教師引導學生總結)內容:一、函數(shù)與方程之間的關系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉化為數(shù)學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數(shù)的關系式,將實際問題轉化為純數(shù)學問題;(2)應用有關函數(shù)的性質作答.
解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標,發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標和橫坐標互為相反數(shù),所以A2015的坐標為(-504,504).故填(-504,504).方法總結:解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結出一般規(guī)律,再根據一般規(guī)律探究特殊情況.三、板書設計軸對稱與坐標變化關于坐標軸對稱作圖——軸對稱變換通過本課時的學習,學生經歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程,掌握空間與圖形的基礎知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學學習的好奇心與求知欲.教學過程中學生能積極參與數(shù)學學習活動,積極交流合作,體驗數(shù)學活動的樂趣.
學習目標:1、知識與技能(1)會用字母、運算符號表示簡單問題的規(guī)律,并能驗證所探索的規(guī)律。(2)能綜合所學知識解決實際問題和數(shù)學問題,發(fā)展學生應用數(shù)學的意識,培養(yǎng)學生的實踐能力和創(chuàng)新意識。2、過程與方法(1)經歷探索數(shù)量關系,運用符號表示規(guī)律,通過驗算驗證規(guī)律的過程。(2)在解決問題的過程中體驗歸納、分析、猜想、抽象還有類比、轉化等思維方法,發(fā)展學生抽象思維能力,培養(yǎng)學生良好的思維品質。3、情感、態(tài)度與價值觀通過對實際問題中規(guī)律的探索,體驗“從特殊到一般、再到特殊”的辯證思想,激發(fā)學生的探究熱情和對數(shù)學的學習熱情。學習重點:探索實際問題中蘊涵的關系和規(guī)律。學習難點:用字母、運算符號表示一般規(guī)律。學習過程:一、創(chuàng)景引入活動:出示一張月歷,學生任意選出3×3方格框出的9個數(shù),并計算出這9個數(shù)的和,告訴老師,老師就可以說出你所選的是哪9個數(shù)。