探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設(shè)計1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應(yīng)關(guān)系.
四、教學(xué)設(shè)計反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應(yīng)關(guān)系有點陌生.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對函數(shù)與圖象的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動中,鼓勵學(xué)生積極思考,提高學(xué)生解決實際問題的能力.當然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達式的尋求,甚至對部分學(xué)生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應(yīng)的圖形具有什么特征呢?
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,有效地增強了學(xué)生的感性認識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進一步鞏固和提高
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應(yīng)進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個數(shù)成比例,則應(yīng)滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉(zhuǎn)化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.
(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。
●教學(xué)目標(一)教學(xué)知識點1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實際問題訓(xùn)練學(xué)生的運用能力.(三)情 感與價值觀要求1.學(xué) 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學(xué)生對知識的應(yīng)用意識.●教學(xué)重點1.相似三角形的周長比、面積比與相似比關(guān)系的推導(dǎo).2.運用相似三角形的比例關(guān)系解決實際問題.●教學(xué)難點相似三角形周長比、面積比與相似比的關(guān)系的推導(dǎo)及運用.●教學(xué)方法引導(dǎo)啟發(fā)式通過溫故知新,知識遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時,同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設(shè)計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓(xùn)練學(xué)生的運用能力,增強學(xué)生對知識的應(yīng)用意識.
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強調(diào),借助多媒體加以突出.
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
(1) 有人叫我大胖豬,我不想和他玩了。(2) 我們一起警察抓小偷的游戲,總讓我當小偷,他當警察, 我心里很不開心。(3) 每次玩跳繩都是他們幾個人玩大繩,不給我們玩。(4) 體育課上,我們玩兩人三足的游戲,總是女生贏,我們男生總是輸。結(jié)果好多男生都不玩了,大家還吵起來,游戲也進行不下去了。2. 老師在課下也抓拍到了一些同學(xué)發(fā)生了一些不愉快,我們一起 去看一看,他們?yōu)槭裁赐娌幌氯チ??播放不守?guī)則的視頻。小組討論,說出自己的想法和做法。小結(jié):看了大家的表演,大家做的都很不錯,都學(xué)會了如何交朋友。發(fā)生了矛盾也沒什么,我們應(yīng)該多溝通,相互謙讓,包容, 遵守游戲規(guī)則,大家在一起還是好朋友。同學(xué)們看,我們的歡樂號已經(jīng)準備就緒,我們一起手拉手揚帆起航吧!構(gòu)建和諧文明校園從我做起?!驹O(shè)計意圖:通過交流討論鼓勵學(xué)生擴大交往范圍,給主動交往的,謙讓、寬容、 鼓勵言行給予肯定,樹立樂群的信心?!?/p>
三是:裝修不應(yīng)該打擾鄰居的正常休息。如果你是事件中的受害方,你會如何處理這件事情?全班匯報交流,教師相機引導(dǎo),板書:權(quán)利不是絕對的,是有界限的。設(shè)計意圖:引導(dǎo)學(xué)生體會權(quán)利行使的界限。環(huán)節(jié)三:課堂小結(jié),內(nèi)化提升學(xué)生談一談學(xué)習(xí)本節(jié)課的收獲,教師相機引導(dǎo)。設(shè)計意圖:梳理總結(jié),體驗收獲與成功的喜悅,內(nèi)化提升學(xué)生的認識與情感。環(huán)節(jié)四:布置作業(yè),課外延伸課后,以古老而優(yōu)美的漢字為主題辦一期手抄報。設(shè)計意圖:將課堂所學(xué)延伸到學(xué)生的日常生活中,有利于落實行為實踐。六、板書設(shè)計為了突出重點,讓學(xué)生整體上感知本節(jié)課的主要內(nèi)容,我將以思維導(dǎo)圖的形式設(shè)計板書:在黑板中上方的中間位置是課題《公民的基本權(quán)利》,下面是:憲法是公民權(quán)利的保障書;法律保障公民基本權(quán)利的落實;權(quán)利不是絕對的,是有界限的。
板書:國家機關(guān)及其工作人員行使職權(quán)造成損 失的,要依法承擔(dān)賠償責(zé)任。設(shè)計意圖:引導(dǎo)學(xué)生懂得國家機關(guān)及其工作人員違法行使職權(quán),侵犯公民合法權(quán)益,造成損害的,國家要依法承擔(dān)賠償責(zé)任。 環(huán)節(jié)環(huán)節(jié)三:課堂小結(jié),內(nèi)化提升學(xué)生談一談學(xué)習(xí)本節(jié)課的收獲,教師相機引導(dǎo)。設(shè)計意圖:梳理總結(jié),體驗收獲與成功的喜悅,內(nèi)化提升學(xué)生的認識與情感。環(huán)節(jié)四:布置作業(yè),課外延伸 課后,以權(quán)力違法必追責(zé)為主題寫一篇日記。 設(shè)計意圖:將課堂所學(xué)延伸到學(xué)生的日常生活中,有利于落實行為實踐。六、板書設(shè)計 為了突出重點,讓學(xué)生整體上感知本節(jié)課的主要內(nèi)容,我將以思維導(dǎo)圖的形式設(shè)計板書: 在黑板中上方的中間位置是課題《權(quán)力違法 必追責(zé)》,下面是:權(quán)力違法要依法糾正;中華人民共和國行政訴訟法;國家機關(guān)及其工作人員行使職權(quán)造成損失的,要依法承擔(dān)賠償責(zé)任。
一、說教材(一)教材分析本課是最新部編版《道德與法治》六年級下冊第四單元第10課。教育學(xué)生要熱愛和平與世界各國人民友好相處,和平是各國人民的共同愿望,也是當今世界兩大主題之一,在飽受戰(zhàn)爭創(chuàng)傷之后,世界各國人民越來越認識到創(chuàng)造一個和平的環(huán)境,對人類社會的進步和發(fā)展有重要意義,并為之進行了不懈的努力,近年來各國也開始重視對下一代進行熱愛和平的教育。(二)教學(xué)目標1.懂得不同民族國家和地區(qū)之間相互尊重,和睦相處的重要意義,培養(yǎng)世界和平與發(fā)展的理念。2.初步了解影響世界歷史發(fā)展的一些重要歷史事件,知道戰(zhàn)爭帶來的傷害,明白和平是世界潮流;知道中國為推動和平做出巨大的貢獻。3.初步掌握收集、整理和運用信息的能力。(三)教學(xué)重難點教學(xué)重點:知道戰(zhàn)爭帶來的傷害,明白和平是世界潮流;知道中國為推動和平做出巨大的貢獻。教學(xué)難點:和平是世界潮流。
【設(shè)計意圖】本環(huán)節(jié)是為了突破難點而設(shè)計,以名篇佳作為范例,引導(dǎo)學(xué)生理解什么叫作合理而大膽的想象,示范作用明顯。另外,本環(huán)節(jié)也是為下一環(huán)節(jié)——學(xué)生自由想象自己十年后的生活做鋪墊。三、寫作實踐師:同學(xué)們,讓我們拿起筆,徜徉于聯(lián)想和想象的世界。1.學(xué)生寫作課件出示:題目:你有沒有憧憬過未來的生活?你覺得,十年以后的你是什么樣子的呢?在做什么?又有著怎樣的精神面貌呢?請以《十年后的我》為題,發(fā)揮想象,寫一篇作文。不少于500字。思路點撥:發(fā)揮大膽而豐富的想象,可從十年后的生活變化、社會發(fā)展變化等方面著手,塑造人物的變化,如人物的相貌、心態(tài)及性格等,但性格的發(fā)展一定要符合邏輯。寫法指導(dǎo):選擇一件事或幾件事,通過語言、動作等描寫來展現(xiàn)人物的性格。寫作中也可采用前后對比的手法,如現(xiàn)在的“我”性格暴躁,十年后的“我”性格溫順等,通過人物的變化來反映社會的變化。
【設(shè)計意圖】這個環(huán)節(jié)的設(shè)計是在學(xué)生掌握了學(xué)法的基礎(chǔ)上,放手讓學(xué)生自主學(xué)習(xí),從而真正做到“將課堂還給學(xué)生”。這樣的設(shè)計不僅充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且更能促使學(xué)生真正掌握初步分析人物形象的方法。四、聯(lián)系實際,拓展延伸1.作者臧克家筆下的聞一多先生是一位潛心于學(xué)術(shù)研究,“做了再說,做了不說”的學(xué)者;也是一位英勇無畏,“說了就做,言論與行動完全一致”的革命家。中國自古以來就重視言行一致,并把它當成做人的準則之一。請收集關(guān)于言和行的成語或名言,選取一句作為你的座右銘,并說明理由。2.課外閱讀聞一多的《太陽吟》《死水》《靜夜》等詩作,欣賞其藝術(shù)特色,感受其中的精神追求。
請同學(xué)們閱讀教材P133虛線框內(nèi)的內(nèi)容,根據(jù)要求選擇某一新聞事件,開展時事討論,積極發(fā)表看法。提示:學(xué)生圍繞事件展開討論,積極發(fā)言,認真聽取同學(xué)的意見,討論時注意遵守之前制定的“班級議事規(guī)則”。(全班討論,師總結(jié))【設(shè)計意圖】此環(huán)節(jié)通過開展班級討論活動,制定貼近學(xué)生生活的“班級議事規(guī)則”,將學(xué)習(xí)的與“和”相關(guān)的知識引入實踐生活,培養(yǎng)學(xué)生運用知識指導(dǎo)生活實踐的綜合能力。五、以“和”為文,總結(jié)收獲師:同學(xué)們,通過本次綜合性學(xué)習(xí)活動,我們知道了“以和為貴”不僅是為人處世的準繩,也是從政治國的法寶,是處理國際關(guān)系的原則,是創(chuàng)建和諧社會的前提條件。通過這次活動,你對中國文化中的“和”一定也有了許多的認識和理解吧!任選一個角度,寫一篇不少于600字的作文,談?wù)勀愕氖斋@。
1、做好“有效教學(xué)語言”課題的結(jié)題工作,進行省級“xxx”課題的深入研究工作?! ?、加強課題研究與教研活動的整合,做實校本教研?! ?、進一步規(guī)范制度管理,積極營造學(xué)校教科研文化,正確認識教科研價值?! ?、進行xx市第x批微型課題研究工作?! ?、認真組織教師參加各級各類教科研培訓(xùn),積極拓展渠道,幫助教師在各級各類報刊上發(fā)表文章。高度重視教科研成果的總結(jié)、提煉與推廣。
(一)優(yōu)勢表現(xiàn)(1)、幼兒的自理潛力已初步構(gòu)成,會自己穿脫衣服和鞋子,自己大小便。(2)、幼兒會說簡單的普通話,能聽懂老師的普通話,并能用簡短的語言回答問題。(3)、對幼兒園里的玩具及活動環(huán)境有較大的新鮮感和好奇心,在老師的鼓勵下愿意參加各項群眾活動。
二、 工作重點 樹立學(xué)生的學(xué)習(xí)理想,明確人生價值;明確學(xué)習(xí)目的,面向全體,偏愛差生。嚴抓紀律,搞好班風(fēng)。建設(shè)以班風(fēng)促進學(xué)風(fēng);做好控流工作,培養(yǎng)負責(zé)、肯干的班干部和學(xué)科帶頭人?! ∪⒔虒W(xué)目標 堅持規(guī)范學(xué)生的日常行為,積極開展德育工作,有計劃有目的地結(jié)合學(xué)校的主題,開展有特色的班務(wù)管理,現(xiàn)制定有目的如下:⑴加強學(xué)生前途理想教育,樹立明確的學(xué)習(xí)目標;⑵認清責(zé)任,鞏固學(xué)生學(xué)習(xí)成績,確立個人學(xué)期目標,以養(yǎng)成良好的行為習(xí)慣和學(xué)習(xí)習(xí)慣為基本要求;⑶加強師生溝通,了解學(xué)生的思想動向及時排除并引導(dǎo)其向正確方向發(fā)展;⑷探討學(xué)習(xí)方法,培養(yǎng)良好的學(xué)習(xí)心態(tài);⑸量化目標:①能在校賽上取得2~3次成績,②獲取8~10次文明班,1~2次文明課室。③能獲先進班集體。