一、舊知回顧1、有理數(shù)的加法法則:(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。(2)絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。(3)互為相反數(shù)的兩數(shù)相加得零。(4)一個數(shù)與零相加,仍得這個數(shù)。注意:一個有理數(shù)由符號和絕對值兩部分組成,進行加法運算時,應注意確定和的符號和絕對值.
5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學生學的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學的知識穿插在學與練當中,充分地利用了課堂有限的時間,并且能讓學生邊學邊練,及時鞏固。 當然這堂課也有很多不足之處,我覺得自己對于課堂上學生做練習時出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應該吸取經(jīng)驗教訓,再以后的教學中加以改進。 另外對于多個有理數(shù)相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習中再做些補充,讓學生加深理解。從中我也得到一個教訓,再以后的教學工作中,我還應該多學習教學方法,多思考如何歸納知識點,才能更好地幫學生形成一個系統(tǒng)的知識系統(tǒng)!
《小蝌蚪找媽媽》是統(tǒng)編版二年級上冊第一單元的一篇寓水的知識于趣味故事中的科學童話。課文采用擬人手法,以第一人稱“我”的敘述方式,生動形象地介紹了自然界中水的變化及其利與害。課文用詞準確、語言優(yōu)美、想象豐富,把知識性、科學性融于趣味性之中,文中多處運用短長句的方式寫出了語言的節(jié)奏感,擬人化的詞句增強了畫面感,充滿情趣。比如“有時候……有時候……”“落”“打”“飄”體現(xiàn)了用詞準確、嚴謹?shù)奶攸c。教學時以學生為主體,讓每個人有嘗試的機會和自主選擇的權利。力求采用自主、合作的學習方式探究問題,解決問題,使學生在生生互動、師生互動中,相互啟發(fā),拓展思路,分享學習之樂。讓學生在開放而有活力的課堂氛圍中始終處于積極主動的學習狀態(tài),變“被動地學”為“主動地學”。 ·教學目標· 1.認識“曬、極”等15個生字,會寫“變、極”等10個生字,讀準多音字“沒”。掌握“天空、傍晚”等詞語。2.能正確、流利、有感情地朗讀課文,簡單說說水的變化過程。3.了解氣候常識,知道汽、云、雨、冰雹和雪都是水的不同形態(tài)。知道水的利與害。4.通過學習,讓學生知道只有合理地利用水資源才能造福人類的道理,樹立環(huán)保意識,激發(fā)學生探究科學的興趣。 ·教學重難點· 1.教學重點:能正確、流利地朗讀課文。簡單說出水的變化過程,體會“落、打、飄”用詞的準確,并能仿照說句子。2.教學難點:了解氣候常識,知道汽、云、雨、冰雹和雪都是水的不同形態(tài)。知道水的利與害。
《植物媽媽有辦法》是統(tǒng)編版二年級上冊第一單元的一篇講述植物傳播種子的詩歌,作者運用比喻和擬人的修辭手法,以富有韻律感的語言,生動形象地介紹了蒲公英、蒼耳、豌豆傳播種子的方法。從植物媽媽的辦法中,能感到大自然的奇妙,激發(fā)學生了解更多的植物知識的愿望,培養(yǎng)學生留心觀察身邊事物的習慣。教學過程中,可以將課文插圖與詩句相配合,感受三種植物傳播種子的方式。課文插圖畫面鮮活、直觀、富有兒童情趣,既能激發(fā)學生的學習熱情,又能輔助學生認識事物,理解重點詞句。 1.認識“植、如”等12個生字,會寫“法、如”等10個生字,讀準多音字“為”和“得”。2.正確、流利、有感情地朗讀課文,背誦課文。3.了解蒲公英、蒼耳、豌豆三種植物傳播種子的方法。4.激發(fā)學生觀察植物、了解植物知識、探究植物奧秘的興趣。 1.教學重點:正確、流利、有感情地朗讀課文,背誦課文。了解蒲公英、蒼耳、豌豆三種植物傳播種子的方法。2.教學難點:激發(fā)學生觀察植物、了解植物知識、探究植物奧秘的興趣。 2課時
接下來請同學們改造這五個句子,變成“如果??,那么??”句式,其實就是一個語文環(huán)節(jié)中的造句,同學們很活躍,紛紛舉手發(fā)言。課堂檢測練習我用到的是課本221頁習題6.2第1、2題,有個別同學會做錯,做錯點在于對判斷還把握不夠到位,還有少數(shù)同學對定義與命題的理解產(chǎn)生混亂。據(jù)此,我提出:定義與命題兩個概念該如何區(qū)別?同學們舉手發(fā)言:定義是一個描述性的概念,而命題是判斷一件事情的句子。還有同學說道:定義就是一個“??叫??”的句式,命題就是“如果??那么??”的句式。在教學中,學生對定義與命題的把握還是比較清楚的。大部分學生可以口頭完成導學案設計的題目。能夠迅速的把一個命題轉化成“如果?那么?”的形式.利用疑問句和祈使句的特點,判定不是命題的語句.迅速的掌握情況還是比較可以的。
(4)學校買10套課桌用500元,已知桌子的單價是凳子的4倍,每張桌子多少元?三、作業(yè)。第四課時課題:可能性和編碼復習目標:1、認識簡單的可能性事件。2、會求簡單事件發(fā)生的可能性,并用分數(shù)表示。3、通過日常生活中的一些事例,使學生初步體會數(shù)字編碼思想在解決實際問題中的應用。4、讓學生學會運用數(shù)進行編碼,初步培養(yǎng)學生的抽象、概括能力。一、基本練習。1、盒子中有紅、白、黃、綠四種顏色的球各一個,只取一次,拿出紅色球的可能性是多少?白色呢?2、商場促銷,將獎品放置于1到10號的罐子里,幸運顧客有一次猜獎機會,一位顧客猜中得獎的可能性是多少?3、盒子中有紅色球8個,藍色球10個,取一次,取出紅色球的可能性大還是藍色球?4、說出下面各組數(shù)據(jù)的中位數(shù)。
然后能通過圖象找出變量的對應關系在圖象上的體現(xiàn)。3、做一做:課本P154第1小題,學生在課本上填表,讓學生通過填表,體會變量之間的相依關系。4、師生小結:和學生一起對剛才的三個例子進行總結,啟發(fā)學生思考三個例子的相同點和不同點,如表現(xiàn)形式不同,有圖象、表格、代數(shù)表達式。相同的有它們都是兩個變量,確定其中一個變量后就能相應確定另一個變量的值。從而使學生的認識上升一個高度,并掌握函數(shù)的概念5、課堂練習:完成課本P155隨堂練習。通過本練習的完成鞏固概念并會用概念去判斷兩個變量間的關系是否可看做函數(shù)。6、新課鞏固:以填空形式對本堂課進行小結,使學生對函數(shù)的概念及應用有一定記憶。并通過對最后問題的思考使學生意識到數(shù)學來自生活,并能應用于生活。
接下來學生類比有理數(shù)中相關概念,體會到了實數(shù)范圍內的相反數(shù)、倒數(shù)、絕對值的意義,并進一步掌握了實數(shù)的相反數(shù)、倒數(shù)、絕對值等知識。學生類比有理數(shù)中相關運算,體會到了實數(shù)范圍內的運算及運算律。并探討用數(shù)軸上的點來表示實數(shù),將數(shù)和圖形聯(lián)系在一起,讓學生進一步領會數(shù)形結合的思想,利用數(shù)軸也可以直觀地比較兩個實數(shù)的大小。然后通過相關練習,檢測學生對實數(shù)相關知識的掌握情況。最后學生交流,互相補充,完成本節(jié)知識的梳理。布置作業(yè):所布置作業(yè)都是緊緊圍繞著“實數(shù)”的概念及運用。設計選作題是為了給學有余力的學生留出自由發(fā)展的空間。五、關于板書設計我將板書設計為“提綱式”。這樣設計主要是力求重點突出,能加深學生對重點知識的理解和掌握,便于記憶。
阿倫.科普蘭是美國現(xiàn)代音樂的倡導者,1920年創(chuàng)作的《貓和老鼠》是一首音樂形象鮮明,詼諧有趣的鋼琴演奏曲。樂曲栩栩如生的表現(xiàn)了貓捉老鼠的情景,不協(xié)和和弦以及多變的節(jié)奏,使作品充滿了現(xiàn)代的氣息。樂曲由引子、A、B、A、尾聲組成。引子中速貓的主題。貓驕傲的懶洋洋的走向高處,兇險的目光窺視周圍。第一樂段開始速度非???,刻畫了老鼠的形象。接著貓在屋子里冷漠的巡視,老鼠靈巧的跑來跑去,一場貓捉老鼠的游戲開始了。第二樂段老鼠得意的逃掉了,它,輕快的跑上跑下。遠處傳來教堂鐘聲的回響。貓懶洋洋的自我陶醉,老鼠見狀,極其靈巧的故意挑逗貓。第三樂段貓再次撲向老鼠,這次老鼠終于被貓逮著了。美聲慢板送葬去曲,裝死的老鼠一瘸一拐的拖著殘腿悄悄的溜走了。在這部作品中作曲家運用了自己獨特的“躍進式”旋律,緊張不安的活躍節(jié)奏,快速的托卡塔(密集)音型、豐富的和聲運用樸實清晰的色彩和富于廣度和深度的想象力。讓人仿佛看到貓和老鼠追逐、爭斗的情形。
合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學生練習:1. 討論隨堂練 習第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習第2題六、小結本節(jié)主要學習了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
(一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設法比較∠A與∠A′的大小;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調換,至少應該進多少件西裝?六、課堂小結:盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。
方法總結:絕對值小于1的數(shù)也可以用科學記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學記數(shù)法不同的是其所使用的是負整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)前面的0的個數(shù)所決定.【類型二】 將用科學記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點向左移動相應的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結:將科學記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a的小數(shù)點向左移動n位所得到的數(shù).三、板書設計用科學記數(shù)法表示絕對值小于1的數(shù):一般地,一個小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負整數(shù).從本節(jié)課的教學過程來看,結合了多種教學方法,既有教師主導課堂的例題講解,又有學生主導課堂的自主探究.課堂上學習氣氛活躍,學生的學習積極性被充分調動,在拓展學生學習空間的同時,又有效地保證了課堂學習質量
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結:熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質是解答此題的關鍵.三、板書設計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質.教學時要多舉幾個例子,讓學生從中總結出規(guī)律,體驗自主探究的樂趣和數(shù)學學習的魅力,為以后的學習奠定基礎
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結:解整式除法的實際應用題時,應分清何為除式,何為被除式,然后應當單項式除以單項式法則計算.三、板書設計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應用在教學過程中,通過生活中的情景導入,引導學生根據(jù)單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學概念的生成過程,從而加深印象
一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結:多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.