本節(jié)課開(kāi)始時(shí),首先由一個(gè)要在一塊長(zhǎng)方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問(wèn)題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過(guò)問(wèn)題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:1.先通過(guò)對(duì)實(shí)際問(wèn)題的解決來(lái)引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問(wèn)題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問(wèn)題的能力。3.對(duì)法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過(guò)程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問(wèn)題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問(wèn)題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來(lái)處理的思想方法.
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開(kāi)方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開(kāi)方而是乘法,但為了方便起見(jiàn),我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開(kāi)方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開(kāi)方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
屬于此類問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
四個(gè)不同類型的問(wèn)題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對(duì)于問(wèn)題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會(huì)畫(huà)圖,利用圖象分析問(wèn)題,體會(huì)數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問(wèn)題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫(xiě)出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識(shí)。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過(guò)大.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況
(一)導(dǎo)入同學(xué)們都喜歡流行音樂(lè),以前我們一起感受過(guò)“中國(guó)流行風(fēng)”。今天,哪位同學(xué)能談?wù)勀銓?duì)歐美流行音樂(lè)的了解?他們的流行音樂(lè)有哪些種類呢?(教師小結(jié))(二)學(xué)唱歌曲《斯卡伯勒集市》1.隨科爾文手勢(shì),感受歌曲調(diào)性風(fēng)格。(1)展示圖片,簡(jiǎn)介科爾文手勢(shì)的基本動(dòng)作,學(xué)生跟隨老師一起做手勢(shì)并唱準(zhǔn)對(duì)應(yīng)的唱名。(2)教師給科爾文手勢(shì),學(xué)生快速說(shuō)出對(duì)應(yīng)唱名。(3)教師用科爾文手勢(shì)給出歌曲骨干音,學(xué)生跟唱。教師引導(dǎo)學(xué)生用正確的發(fā)聲方法來(lái)演唱,感受旋律的調(diào)性風(fēng)格。1=F 4/46–3-|7–6-|36–4|3---|65–3|165-|6–3-|17–6|6---||(4)始終不展示歌曲曲譜及主旋律,學(xué)生進(jìn)一步跟隨科爾文手勢(shì)鞏固、感受歌曲主旋律。
教學(xué)過(guò)程:一、導(dǎo)入同學(xué)們,你們聽(tīng)過(guò)“天籟之音”嗎?在2008年奧運(yùn)會(huì)上,《我和你》的女聲演唱者莎拉·布萊曼,她的聲音就被稱為“天籟之音”。今天我們來(lái)欣賞她的一首歌曲。二、新課教學(xué)1、播放《斯卡伯勒集市》初次聆聽(tīng),談?wù)勀愕母惺堋?、簡(jiǎn)介歌曲來(lái)源及故事背景《斯卡伯勒集市》原本是一首特立尼達(dá)和多巴哥民歌,1965年,保羅·西蒙碰巧學(xué)會(huì)這首歌的旋律,于是加工成了現(xiàn)在的“斯卡布羅集市”,并成為永恒的暢銷金曲。這首歌是美國(guó)六十年代最受大學(xué)生歡迎的電影、1968年奧斯卡獲獎(jiǎng)片《畢業(yè)生》中的主題曲。
歌劇的序曲為整部歌劇奠定了基調(diào),要深入理解這部序曲必須要了解對(duì)應(yīng)的歌劇?!遏斔固m與柳德米拉》是一部具有劃時(shí)代意義的交響樂(lè)之一,它和《伊凡·蘇薩寧》共同開(kāi)辟了俄羅斯歌劇的道路。這部歌劇創(chuàng)作于1836~1842年間,首演于圣彼得堡。歌劇又格林卡改編自普希金的神話長(zhǎng)詩(shī)。該詩(shī)以古代武士魯斯蘭與公主柳德米拉的婚禮開(kāi)場(chǎng),當(dāng)婚宴達(dá)到高潮的時(shí)候,新娘突然被妖魔切爾諾劫走了,魯斯蘭為了營(yíng)救心上人歷經(jīng)千難萬(wàn)險(xiǎn),又借助神劍的威力終于制服了妖魔救出了公主。格林卡利用神話為外表贊頌真理,智慧,英雄氣概和堅(jiān)貞的愛(ài)情,著重表現(xiàn)了善良與光明終將戰(zhàn)勝邪惡的主題。這也是格林卡一貫的歌劇風(fēng)格。
教學(xué)過(guò)程:一、導(dǎo)入同學(xué)們,你們聽(tīng)過(guò)“天籟之音”嗎?在2008年奧運(yùn)會(huì)上,《我和你》的女聲演唱者莎拉·布萊曼,她的聲音就被稱為“天籟之音”。今天我們來(lái)欣賞她的一首歌曲。二、新課教學(xué)1、播放《斯卡伯勒集市》初次聆聽(tīng),談?wù)勀愕母惺堋?、簡(jiǎn)介歌曲來(lái)源及故事背景《斯卡伯勒集市》原本是一首特立尼達(dá)和多巴哥民歌,1965年,保羅·西蒙碰巧學(xué)會(huì)這首歌的旋律,于是加工成了現(xiàn)在的“斯卡布羅集市”,并成為永恒的暢銷金曲。這首歌是美國(guó)六十年代最受大學(xué)生歡迎的電影、1968年奧斯卡獲獎(jiǎng)片《畢業(yè)生》中的主題曲。3、介紹歌手4、對(duì)比兩個(gè)版本的《斯卡伯勒集市》三、結(jié)束課后,同學(xué)們可以搜集電影《畢業(yè)生》,從而加深對(duì)歌曲的理解。
1.誰(shuí)來(lái)扮演顧客,誰(shuí)又來(lái)扮演售貨員呢?(選出購(gòu)物示范學(xué)生兩名。)2.教師問(wèn)顧客:你喜歡什么商品?準(zhǔn)備去哪個(gè)柜臺(tái)購(gòu)買?(買什么。)3.你喜歡的商品標(biāo)價(jià)是多少錢(qián)?(讀價(jià)格。)4.你手里有多少錢(qián)?怎樣付款?(算付款。)5.教師問(wèn)售貨員:顧客拿出了多少錢(qián)?他要買的商品是多少錢(qián)?(讀價(jià)格。)6.你要找多少零錢(qián)給他?(算找零。)教師請(qǐng)其他學(xué)生觀察這兩名學(xué)生如何進(jìn)行商品買賣,在買賣過(guò)程中有什么步驟。開(kāi)始活動(dòng)1.活動(dòng)要求:顧客要檢查售貨員有沒(méi)有找錯(cuò)零錢(qián)。2.賣易拉罐和礦泉水瓶的同學(xué)要檢查廢品回收員有沒(méi)有算錯(cuò)一共應(yīng)該付多少錢(qián)。3.售貨員要看清顧客付款對(duì)不對(duì)。4.可以同學(xué)之間互相幫助,可以合伙購(gòu)買。教師選定一部分學(xué)生扮演售貨員,一兩名學(xué)生扮演廢品回收員,其余的扮演顧客。讓學(xué)生根據(jù)自己的需要,利用人民幣卡片購(gòu)買商品、廢品回收活動(dòng)。在活動(dòng)過(guò)程中,要讓買賣雙方互相檢查對(duì)方在進(jìn)行人民幣計(jì)算時(shí)有沒(méi)有發(fā)生錯(cuò)誤。
【課題】1.1 集合的概念【教學(xué)目標(biāo)】1、理解集合、元素的概念及其關(guān)系,掌握常用數(shù)集的字母表示;2、掌握集合的列舉法與描述法,會(huì)用適當(dāng)?shù)姆椒ū硎炯希?、通過(guò)集合語(yǔ)言的學(xué)習(xí)與運(yùn)用,培養(yǎng)分類思維和有序思維,從而提升數(shù)學(xué)思維能力.4、接受集合語(yǔ)言,經(jīng)歷利用集合語(yǔ)言描述元素與集合間關(guān)系的過(guò)程,養(yǎng)成規(guī)范意識(shí),發(fā)展嚴(yán)謹(jǐn)?shù)淖黠L(fēng)?!窘虒W(xué)重點(diǎn)】集合的表示法. 【教學(xué)難點(diǎn)】集合表示法的選擇與規(guī)范書(shū)寫(xiě).【教學(xué)設(shè)計(jì)】(1)通過(guò)生活中的實(shí)例導(dǎo)入集合與元素的概念;(2)引導(dǎo)學(xué)生自然地認(rèn)識(shí)集合與元素的關(guān)系;(3)針對(duì)集合不同情況,認(rèn)識(shí)到可以用列舉和描述兩種方法表示集合,然后再對(duì)表示法進(jìn)行對(duì)比分析,完成知識(shí)的升華;(4)通過(guò)練習(xí),鞏固知識(shí).(5)依照學(xué)生的認(rèn)知規(guī)律,順應(yīng)學(xué)生的學(xué)習(xí)思路展開(kāi),自然地層層推進(jìn)教學(xué).
學(xué)科數(shù)學(xué) 課 題 1.2 集合之間的關(guān)系班級(jí) 人數(shù) 授課時(shí)數(shù)2 課 型新課 周次 授課時(shí)間 教 學(xué) 目 的 知識(shí)目標(biāo):(1)掌握子集、真子集的概念; (2)掌握兩個(gè)集合相等的概念; (3)會(huì)判斷集合之間的關(guān)系. 能力目標(biāo):培養(yǎng)學(xué)生的分析問(wèn)題能力解決問(wèn)題的能力. 情感目標(biāo):通過(guò)師生互動(dòng),學(xué)生之間的討論分析,加強(qiáng)合作意識(shí)。 教學(xué)重點(diǎn)集合與集合間的關(guān)系及其相關(guān)符號(hào)表示. 教學(xué)難點(diǎn)真子集概念的理解.
學(xué)科數(shù)學(xué) 課 題 1.4 充要條件班級(jí) 人數(shù) 授課時(shí)數(shù) 2 課 型 新授課 周次 授課時(shí)間 教 學(xué) 目 的 知識(shí)目標(biāo):了解“充分條件”、“必要條件”及“充要條件” 能力目標(biāo):培養(yǎng)學(xué)生的分析問(wèn)題能力解決問(wèn)題的能力. 情感目標(biāo):通過(guò)師生互動(dòng),學(xué)生之間的討論分析,加強(qiáng)合作意識(shí)。 教學(xué)重點(diǎn)“充分條件”、“必要條件”及“充要條件”.教學(xué)難點(diǎn)符號(hào)“”,“”,“”的正確使用. 教 具 教 后 小 結(jié) 學(xué)生是否真正理解有關(guān)知識(shí); 是否能利用知識(shí)、技能解決問(wèn)題; 在知識(shí)、技能的掌握上存在哪些問(wèn)題。
【教學(xué)目標(biāo)】知識(shí)目標(biāo):⑴ 理解函數(shù)的單調(diào)性與奇偶性的概念;⑵ 會(huì)借助于函數(shù)圖像討論函數(shù)的單調(diào)性;⑶理解具有奇偶性的函數(shù)的圖像特征,會(huì)判斷簡(jiǎn)單函數(shù)的奇偶性.能力目標(biāo):⑴ 通過(guò)利用函數(shù)圖像研究函數(shù)性質(zhì),培養(yǎng)學(xué)生的觀察能力;⑵ 通過(guò)函數(shù)奇偶性的判斷,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力.【教學(xué)重點(diǎn)】⑴ 函數(shù)單調(diào)性與奇偶性的概念及其圖像特征;⑵ 簡(jiǎn)單函數(shù)奇偶性的判定.【教學(xué)難點(diǎn)】函數(shù)奇偶性的判斷.(*函數(shù)單調(diào)性的判斷)【教學(xué)設(shè)計(jì)】(1)用學(xué)生熟悉的主題活動(dòng)將所學(xué)的知識(shí)有機(jī)的整合在一起;(2)引導(dǎo)學(xué)生去感知數(shù)學(xué)的數(shù)形結(jié)合思想.通過(guò)圖形認(rèn)識(shí)特征,由此定義性質(zhì),再利用圖形(或定義)進(jìn)行性質(zhì)的判斷;(3)在問(wèn)題的思考、交流、解決中培養(yǎng)和發(fā)展學(xué)生的思維能力.【教學(xué)備品】教學(xué)課件.【課時(shí)安排】3課時(shí).(90分鐘)【教學(xué)過(guò)程】
【教學(xué)目標(biāo)】知識(shí)目標(biāo):⑴ 理解指數(shù)函數(shù)的圖像及性質(zhì);⑵ 了解指數(shù)模型,了解指數(shù)函數(shù)的應(yīng)用.能力目標(biāo):⑴ 會(huì)畫(huà)出指數(shù)函數(shù)的簡(jiǎn)圖;⑵ 會(huì)判斷指數(shù)函數(shù)的單調(diào)性;⑶了解指數(shù)函數(shù)在生活生產(chǎn)中的部分應(yīng)用,從而培養(yǎng)學(xué)生分析與解決問(wèn)題能力.【教學(xué)重點(diǎn)】⑴ 指數(shù)函數(shù)的概念、圖像和性質(zhì);⑵ 指數(shù)函數(shù)的應(yīng)用實(shí)例.【教學(xué)難點(diǎn)】指數(shù)函數(shù)的應(yīng)用實(shí)例.【教學(xué)設(shè)計(jì)】⑴ 以實(shí)例引入知識(shí),提升學(xué)生的求知欲;⑵ “描點(diǎn)法”作圖與軟件的應(yīng)用相結(jié)合,有助于觀察得到指數(shù)函數(shù)的性質(zhì);⑶知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的思維能力;⑷實(shí)際問(wèn)題的解決,培養(yǎng)學(xué)生分析與解決問(wèn)題的能力;⑸以小組的形式進(jìn)行討論、探究、交流,培養(yǎng)團(tuán)隊(duì)精神.【教學(xué)備品】教學(xué)課件.【課時(shí)安排】2課時(shí).(90分鐘)【教學(xué)過(guò)程】 教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 4.2指數(shù)函數(shù). *創(chuàng)設(shè)情景 興趣導(dǎo)入 問(wèn)題 某種物質(zhì)的細(xì)胞分裂,由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……,知道分裂的次數(shù),如何求得細(xì)胞的個(gè)數(shù)呢? 解決 設(shè)細(xì)胞分裂次得到的細(xì)胞個(gè)數(shù)為,則列表如下: 分裂次數(shù)x123…x…細(xì)胞個(gè)數(shù)y2=4=8=…… 由此得到, . 歸納 函數(shù)中,指數(shù)x為自變量,底2為常數(shù). 介紹 播放 課件 質(zhì)疑 引導(dǎo) 分析 了解 觀看 課件 思考 領(lǐng)悟 導(dǎo)入 實(shí)例 比較 易于 學(xué)生 想象 歸納 領(lǐng)會(huì) 函數(shù) 的變 化意 義 5
課 程數(shù)學(xué)章節(jié)內(nèi)容 課程類型新課課時(shí)安排2課時(shí)指導(dǎo)教師 日期12月 7 日學(xué)習(xí)目標(biāo)掌握用弧度表示角度的大小學(xué)習(xí)重點(diǎn)掌握用弧度表示角的方法學(xué)習(xí)難點(diǎn)弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學(xué)內(nèi)容:任意角度的推廣、終邊相等的角的表示方法; 2、已經(jīng)學(xué)過(guò)角度的計(jì)量單位:度,度分秒是如何換算的; 3、圓的周長(zhǎng)公式和扇形弧長(zhǎng)公式。問(wèn)題(順著問(wèn)題找思路)1、弧度制:等于半徑長(zhǎng)的圓弧所對(duì)的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_(kāi)____數(shù),負(fù)角的弧度為_(kāi)____數(shù),零角的弧度為零。 3、由弧度的定義可知,當(dāng)角α用弧度來(lái)表示,其絕對(duì)值|α|和圓弧長(zhǎng)l與圓的半徑r有:|α|=________。 4、一個(gè)圓的周長(zhǎng)為_(kāi)____,所以一周角(360°)的弧度為_(kāi)______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉(zhuǎn)化為弧度制?如何將弧度制轉(zhuǎn)化為角度制?(結(jié)合實(shí)例講解)練習(xí)(通過(guò)練習(xí)固要點(diǎn))1、練習(xí)5.2.1; 2、例3;展示(通過(guò)展示強(qiáng)能力)(25分鐘)(包括學(xué)生展示回顧、問(wèn)題、練習(xí)、小組總結(jié)等部分)1、引導(dǎo)各小組展示學(xué)習(xí)成果,在有各小組長(zhǎng)指定小組成員展示,結(jié)束后,該組組長(zhǎng)須總結(jié)或指定其他成員進(jìn)行總結(jié)。 2、展示過(guò)程中,提醒同學(xué)注意老師的板書(shū),或者請(qǐng)老師進(jìn)行總結(jié),或題目的講解。
創(chuàng)設(shè)情景 興趣導(dǎo)入問(wèn)題 觀察鐘表,如果當(dāng)前的時(shí)間是2點(diǎn),那么時(shí)針走過(guò)12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?再經(jīng)過(guò)12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?.解決每間隔12小時(shí),當(dāng)前時(shí)間2點(diǎn)重復(fù)出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動(dòng)腦思考 探索新知概念 對(duì)于函數(shù),如果存在一個(gè)不為零的常數(shù),當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個(gè)函數(shù)的一個(gè)周期. 由于正弦函數(shù)的定義域是實(shí)數(shù)集R,對(duì),恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡(jiǎn)稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 10*動(dòng)腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時(shí),不妨設(shè)角為鈍角,如圖所示,以為原點(diǎn),以射線的方向?yàn)檩S正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時(shí),同樣可以得到這個(gè)結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對(duì)的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問(wèn)題: (1)已知三角形的兩個(gè)角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對(duì)角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20