二.學情分析本次課的主體是七年級的學生——對學生的實際情況,學校情況,場地器材加以分析:本班16人,這個年齡段的學生活潑好動,思維活躍,想象力豐富,又比較自信,而他們的潛能需要老師來開發(fā)。怎樣才能把學生的這種潛能充分挖掘出來呢?怎樣才能把這堂課的內(nèi)容上的靈活多變呢?又如何在有限的課堂時間里提高學生的練習參與度?這對我來說是一個新的挑戰(zhàn)。
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質,注意掌握數(shù)形結合思想與方程思想的應用.
1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結:幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質和興趣。
解:設甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結:設未知數(shù)時,一般是求什么,設什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調(diào)數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
二、說設計理念在民主和諧的氛圍中,把“讀”落到實處,讓學生在讀中感悟,在讀中升華感情。把課堂作為信息交流的平臺,讓學生在平等、自主的交流中豐富語言積累,情感得到熏陶,價值觀得到培養(yǎng)。三、說教學目標1.通過文章重點語句感悟劉伯承的頑強毅力,從而使學生情感得到熏陶,價值觀得到培養(yǎng);2.培養(yǎng)快速閱讀能力,豐富語言積累;四、說重點 通過文章重點語句感悟劉伯承的頑強毅力,從而使學生情感得到熏陶,價值觀得到培養(yǎng)。五、說難點沃克醫(yī)生為什么稱贊劉伯承是軍神。六、說教法(一)直擊中心法。為了讓學生能夠理解表現(xiàn)“軍神”的詞句,能說出沃克醫(yī)生稱劉伯承為“軍神”的原因。 課堂開始,首先讓學生找出本文的中心句,也就是沃克醫(yī)生所夸贊劉伯承的那句話。然后就這句話作為本課教學的一個切入點,讓學生再從課文中尋找重點詞句,通過對重點詞句的把握來突破這個難點。
第三環(huán)節(jié):課堂小結活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
1.會寫“洶、涌”等15個生字。正確讀寫“洶涌澎湃、倒霉”等詞語。? 2.默讀課文,理解課文內(nèi)容,感受漁夫與桑娜的勤勞、淳樸和善良,學習他們寧可自己受苦也要幫助他人的美德。?3.學習作者通過環(huán)境和人物對話、心理的描寫,表現(xiàn)人物品質的寫法。?三、說教學重難點1.抓住重點詞句,體會其含義。2.理解課文內(nèi)容,理解桑娜復雜的心理活動,感受漁夫夫婦的高尚品質和沙俄時代窮人的窮困悲慘。?四、說教法學法? 《語文課程標準》強調(diào):閱讀教學是學生、教師、文本之間對話的過程。如何將這三者之間的對話落到實處?對于高年級閱讀教學,感悟品味是我們在課堂教學中常用的方式。因此,在本課中,我準備抓住桑娜內(nèi)心活動的變化這條感情線索,采用啟發(fā)質疑、以讀促悟、層層深入的方法引導學生體會文章的內(nèi)涵。?為了突出教學重點,突破教學難點,我在學法上,引導學生用“自讀自悟法”來學習本課,仔細品味重點詞、句、段,體會文中的情感,做到讀中悟,悟中讀,既鍛煉學生的思維能力,也鍛煉學生自行解決問題的能力。
一、舊知回顧1、有理數(shù)的加法法則:(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。(2)絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。(3)互為相反數(shù)的兩數(shù)相加得零。(4)一個數(shù)與零相加,仍得這個數(shù)。注意:一個有理數(shù)由符號和絕對值兩部分組成,進行加法運算時,應注意確定和的符號和絕對值.
三、說教法與學法說教法:教學效果的成敗取決于教學方法是否得當。在教學過程中我運用了多種方法進行教學,具體方法有:在認讀生字時主要讓學生采用自由拼讀,小老師領讀,指名讀,齊讀,搶讀等不同方式對生字進行識記。在組織學生對課文的朗讀時,我主要采用了自由讀,同桌兩人互讀,指名讀等方法。說學法:根據(jù)一年級學生特點及本節(jié)課的目標,本節(jié)課主要指導學生采用自主探究、合作交流、成果展示法的學習方法,開展學習活動。四、說教學過程為了更好、更有效地落實教學目標,突出重點,突破難點,我的教學流程有以下四大板塊。(一) 情境導入,激發(fā)興趣1.導課環(huán)節(jié),首先利用多媒體向學生播放老虎、狗熊、狐貍、梅花鹿等圖片,并配以音樂,讓學生根據(jù)圖片說出動物的名字,在輕松、愉悅的氛圍中進入新課的學習——《動物王國開大會》。2.在板書課題時,相機教學“動物”的“物”字,在這里要讀輕聲,認識牛字旁。3.再次齊讀課題。
一、說教材課文是一首詩歌,共6行,3句,向我們介紹了蜻蜓、蝴蝶、蚯蚓、螞蟻、蝌蚪、蜘蛛這六種小蟲的美妙生活,最關鍵的是,這幾種小動物的名稱都是蟲子旁的字,所以教學時怎樣引導學生尋找漢字偏旁部首的規(guī)律是一個需要教師重點思考并解決的問題。課文的插圖形象地再現(xiàn)了詩歌所描繪的小動物們在自己的領域中忙碌的美麗景觀。二、說目標1.會寫7個生字,會認12個生字,重點認識蟲子旁和走之底這兩個新偏旁,并能初步養(yǎng)成根據(jù)偏旁推敲漢字含義的意識。2.正確流利地有感情朗讀課文,熟讀成誦,當堂達標。3.使學生感受到小動物們忙忙碌碌的生活的美好,激發(fā)學生觀察自然和熱愛自然的情感。本課的教學重點是識字、寫字,練習朗讀背誦課文。教學難點是通過對比相同偏旁漢字含義的特點,養(yǎng)成根據(jù)漢字偏旁推敲漢字所表達內(nèi)涵的意識和習慣。
情景感知概括運用設疑誘導動手操作合作交流嘗試活動啟發(fā)引導類比發(fā)現(xiàn)演練結合觀察分析自主探索問題討論利用嘗試活動“我來當老師!”給學生提供設計問題的機會,培養(yǎng)他們實事求是的科學態(tài)度,勇于質疑、敢于創(chuàng)新的良好習慣及數(shù)學應用能力。例1、根據(jù)因式分解的概念,判斷下列由左邊到右邊的變形,哪些是因式分解,哪些不是,為什么?通過羅列一些似是而非、容易產(chǎn)生錯誤的對象讓學生辨析,促使他們認識概念的本質、確定概念的外延,從而形成良好的認知結構。例2:解答下列問題:(1)993-99能被99整除嗎?能被98整除嗎?能被100整除嗎?(2)求代數(shù)式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。讓學生進一步體會用分解因式解決相關問題的簡捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),則m=,n=。
說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設計意圖:例1是讓學生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數(shù)形結合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結,結合板書,引導學生自我總結,重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題
教師姓名 課程名稱數(shù)學班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學 目 標知識目標:1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對應 技能目標:1、會解一元二次方程 2、會畫二次函數(shù)的圖像 3、能結合圖像寫出一元二次不等式的解集 情感目標:體會知識之間的相互關聯(lián)性,體會數(shù)形結合思想的重要性教學 重點 和 難點重點: 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關系 難點: 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對應的部分教 學 資 源《數(shù)學》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習作 業(yè)習題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結合,相關知識點融會貫通,數(shù)形結合的思想方法在這有很好的運用。三種情況只要講清楚一種,另外兩種可由學生自行推出結論。
【教學目標】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W難點】 一元二次不等式的解法?!窘虒W設計】 1、從復習一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習,培養(yǎng)學生的數(shù)學思維能力?!菊n時安排】 2課時(90分鐘)【教學過程】一、一元二次不等式的解法² 復習回顧1、根據(jù)初中所學知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標是什么?(3)當y<0時,x的取值范圍是什么?總結:由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集