當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設(shè)計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設(shè)黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設(shè)計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學交流水平,發(fā)展探索、合作的精神.
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應該進多少件西裝?六、課堂小結(jié):盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
四、范例學習、理解領(lǐng)會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學生畫圖、 實驗、觀察、探索。五、隨堂練習課本隨堂練習 學生觀察、畫圖、合作交流。六、課堂總結(jié)本節(jié)課通過各種實踐活動,促進大家對內(nèi)容的理解,本課內(nèi)容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應具備的優(yōu)秀品質(zhì).從教學樓到圖書館,總有少數(shù)同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質(zhì)和興趣。
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進行化簡。
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計為什么,要證明)推理的意義:數(shù)學結(jié)論必須經(jīng)過嚴格的論證檢驗數(shù)學結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學生的好奇心,從而認識證明的必要性,培養(yǎng)學生的推理意識,了解檢驗數(shù)學結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
教學目標:1.經(jīng)歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會根據(jù)三視圖描述原幾何體。教學重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法教學過程設(shè)計一、實物觀察、空間想像設(shè)置:學生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學們畫出三視圖。而后,再要求學生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個數(shù)成比例,則應滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉(zhuǎn)化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.
展示學習過的物理學內(nèi)容:伽利略的“比薩斜塔”實驗,證明了:兩個鐵球同時落地。得出結(jié)論:實踐是檢驗認識正確與否的唯一標準。(因為這點理解起來有點難,所一教師要適當?shù)闹v解)A、一種認識是否是真理不能由這一認識本身回答B(yǎng)、客觀事物自身也不能回答認識是否正確地反映了它C、實踐是聯(lián)系主觀與客觀的橋梁。人們把認識和實踐的結(jié)果對照,相符合,認識就正確?!?實踐是認識的目的和歸宿:走進社會:(課本P46歸國博士案例)從這個故事中我們可以得到什么啟示?得出結(jié)論:實踐是認識的歸宿和目的。啟發(fā)學生學以致用,eg:紀中的學生研究地溝油簡易檢測方法(靈活利用身邊的教學資源)?!景鍟O(shè)計】實踐是認識的基礎(chǔ)(板書)投影:逐步展示本課知識結(jié)構(gòu)圖。學生通過回憶,讓學生有直觀的認識,學習內(nèi)容一目了然。1.實踐是認識的來源。2.實踐是認識發(fā)展的動力。3.實踐是檢驗認識的真理性的唯一標準。
(7)精講即精講點撥,釋疑解難?,F(xiàn)代教育理論一方面強調(diào)學生學習的主動性;另一方面也重視發(fā)揮教師的積極性。課堂活動的主動性、合理性、有效性的實現(xiàn)還有賴于教師的講。精講就要求教師的講授內(nèi)容精要,分析精辟,語言精彩、節(jié)奏精練、點撥精當。從內(nèi)容上看,本節(jié)課精講主要有三處:一、運動的含義;二、運動是物質(zhì)的根本屬性;三、靜止是運動的特殊狀態(tài)。2、教學手段多媒體輔助教學。六、教學過程第一步:創(chuàng)設(shè)情景,用“謎語”導入新課。使學生置身于教學內(nèi)容的情景之中,產(chǎn)生繼續(xù)探究的強烈愿望。第二步:運用直觀、形象的畫面將教學目標問題,喚起學生參與欲望,驅(qū)使學生去思考,去自讀。第三步:引導學生相互討論,實現(xiàn)學生之間的橫向交流。第四步:教師依據(jù)反饋信息,給予重點講授、提示點撥、搭橋鋪路。第五步:設(shè)置故事型的模擬法庭,開展討論,在高潮中結(jié)束新課。第六步:總結(jié)概括,深化知識,形成網(wǎng)絡。
讀文感悟?! ?、出示:鄧小平爺爺( )地種柏樹?! 煟和瑢W們帶著這個問題仔細讀課文,用“——”劃出有關(guān)句子。然后想一想,“( )”里填什么詞比較恰當?! ?、生自由讀課文,邊讀邊劃?! ?、 全班匯報交流?! 煟耗阏J為鄧小平爺爺( )地種柏樹,從哪些地方體現(xiàn)出來? ?。ㄒ宰x為主,引導學生學會讀課文,尊重學生個性化的理解。“( )”里可填“起勁、仔細、認真、一絲不茍、小心”等等,隨機進行讀文,結(jié)合語言文字訓練,體會鄧小平爺爺積極為祖國綠化作貢獻的精神。) ?。ㄈ纾赫页鲟囆∑綘敔敺N樹的動作詞“挖、挑選、移、填、站在、扶正”,同桌伙伴,一人做動作,一人口述植樹過程。“移”字可換“放”字比較理解。) 4、 四人小組討論:鄧小平爺爺為什么種樹?他是怎么想的? ?。ńY(jié)合課前收集的鄧小平爺爺?shù)馁Y料理解,體會鄧小平爺爺一心為國之心,激發(fā)學生參與綠化的熱情。)
1、知識與技能---------認識三種面值人民幣,能正確辨認三種面值人民幣,能用錢幣購買相應價格商品。2、方法與過程---------運用游戲的方式,讓孩子們體會人民幣在商品交換中的功能和作用說教材:人民幣是我國法定貨幣,它在人們生活中起著重要作用,《認識人民幣》是大班數(shù)學中重點章節(jié)內(nèi)容,學習認識人民幣,使幼兒初步知道人民幣的知識和如何使用人民幣,提高社會實踐能力,現(xiàn)代教育理論主張讓幼兒動手“做”數(shù)學,在教學中要結(jié)合實際給幼兒創(chuàng)設(shè)實踐機會,這節(jié)課的設(shè)計我充分利用幼兒已有的經(jīng)驗,把這一學習設(shè)計成實踐活動,讓幼兒通過游戲認識錢幣。教學重點:認識三種面值人民幣教學難點:能正確使用人民幣購買相應價格商品教學方法:
2、教學目標新教材對學習目標的分解是以“學生的全域發(fā)展”作為標準進行的,更注重了學生的主體性和目標的可操作性。學習目標首先被分解為“知識和能力”、“過程和方法”、“情感、態(tài)度與價值觀”。不僅解決了“學到什么”和“怎樣學習”的問題,尤其解決了“喜歡學”和“主動學”的問題。根據(jù)本節(jié)課的地位和作用,依據(jù)教學大綱以及學生的認知結(jié)構(gòu)心里特征,我制定了如下目標:① 知識目標:根據(jù)具體情境學會用字母表示數(shù); ② 能力目標:能用含字母的式子表示數(shù)量關(guān)系; ③ 情感目標:通過教學引導學生從現(xiàn)實生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣,體驗用字母表示數(shù)的簡明性,培養(yǎng)學生的抽象思維能力和歸納概括能力 ④ 教學重、難點:學會用字母表示數(shù),用含字母的式子表示數(shù)量關(guān)系。二、說教法“教必有法而教無定法”,只有方法得當,才會有效。根據(jù)本課教學內(nèi)容的特點和學生思維活動的特點,我采用了觀察比較、順勢誘導、交流歸納的教學方法。
教學目標:1、知識與技能:通過復習,使學生進一步理解乘法運算的意義。通過知識的系統(tǒng)復習,溝通乘法口訣與乘法算式、加法算式及倍數(shù)之間的聯(lián)系,能正確、合理、靈活的解決問題。2、過程和方法:在經(jīng)歷整理和復習的過程中,培養(yǎng)學生的數(shù)學能力。注重培養(yǎng)學生從不同角度觀察、思考問題的習慣,體會解決問題策略多樣化的教學思想。3、情感、態(tài)度與價值觀:通過創(chuàng)設(shè)連貫性的故事情境,使學生積極主動的投入到學習中來,從而體驗到學習數(shù)學的樂趣。培養(yǎng)學生學習數(shù)學的熱情以及積極思考與同學合作學習的習慣。教學重點:進一步理解乘法運算的意義,乘法口訣與乘法算式、加法算式及倍數(shù)之間的聯(lián)系教學難點:建構(gòu)乘法口訣與乘法算式、加法算式及倍數(shù)之間的聯(lián)系
一、說教材今天我說課的課題是《一個數(shù)乘小數(shù)》。它是人教版小學五年級上冊第一單元第二課時的教學內(nèi)容。本課時內(nèi)容是在學生學習了小數(shù)點位置移動引起小數(shù)大小變化的規(guī)律,以及前一節(jié)課《小數(shù)乘整數(shù)》的基礎(chǔ)上進行教學的,它既是小數(shù)除法學習的基礎(chǔ),也是小數(shù)四則混合運算學習的基礎(chǔ)。本節(jié)課的教學目標為:1、讓學生進一步鞏固掌握一個數(shù)乘小數(shù)的意義和計算方法,通過學生的積極思考、全班交流和教師引導,得出確定積的小數(shù)位數(shù)時,位數(shù)不夠要用“0”補足的方法。并能正確進行筆算和口算。2、讓學生體驗學習過程是一個不斷遇到問題、不斷探究解決問題方法的過程,感受探索成功的愉悅,感受數(shù)學與生活的聯(lián)系。3、在探索過程中,培養(yǎng)學生的推理能力、歸納能力和語言表達能力。