提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

中班數(shù)學(xué)教案:5的相鄰數(shù)

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.5《柱、錐、球及其簡(jiǎn)單組合體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.5《柱、錐、球及其簡(jiǎn)單組合體》教學(xué)設(shè)計(jì)

    課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式 教學(xué)方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學(xué)目的1、使學(xué)生認(rèn)識(shí)柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述生活中簡(jiǎn)單物體的結(jié)構(gòu)。 2、讓學(xué)生了解柱、錐、球的側(cè)面積和體積的計(jì)算公式。 3、培養(yǎng)學(xué)生觀察能力、計(jì)算能力。

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測(cè)量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長(zhǎng)度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長(zhǎng)度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個(gè)計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個(gè)步驟.完成第1個(gè)步驟有k1種方法,完成第2個(gè)步驟有k2種方法,……,完成第n個(gè)步驟有kn種方法,并且只有這n個(gè)步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個(gè)問題: 在北京、重慶、上海3個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機(jī)票? 這個(gè)問題就是從北京、重慶、上海3個(gè)民航站中,每次取出2個(gè)站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個(gè)民航站中任意選取1個(gè),有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個(gè)民航站中任意選取1個(gè),有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本虾!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動(dòng)腦思考 探索新知 我們將被取的對(duì)象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個(gè)不同元素中,任取2個(gè),按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個(gè)不同元素中,任取m (m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列,時(shí)叫做選排列,時(shí)叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    一、定義:  ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開式;上述二項(xiàng)展開式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開式的通項(xiàng),用表示;叫做二項(xiàng)展開式的通項(xiàng)公式.二、二項(xiàng)展開式的特點(diǎn)與功能1. 二項(xiàng)展開式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開式的功能注意到二項(xiàng)展開式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問題的原始依據(jù).又注意到在的二項(xiàng)展開式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項(xiàng)式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.2《概率》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.2《概率》教學(xué)設(shè)計(jì)

    課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時(shí)數(shù)2授課班級(jí) 授課時(shí)間 教學(xué)地點(diǎn) 背景分析正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點(diǎn)學(xué)生是容易理解的,問題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動(dòng)過的,目的就在于幫助學(xué)生對(duì)這一知識(shí)的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識(shí)目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 1 會(huì)用隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2 會(huì)用基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運(yùn)算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實(shí)驗(yàn)】 商店進(jìn)了一批蘋果,小王從中任意選取了10個(gè)蘋果,編上號(hào)并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號(hào)12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計(jì)出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 在統(tǒng)計(jì)中,所研究對(duì)象的全體叫做總體,組成總體的每個(gè)對(duì)象叫做個(gè)體. 上面的實(shí)驗(yàn)中,這批蘋果的質(zhì)量是研究對(duì)象的總體,每個(gè)蘋果的質(zhì)量是研究的個(gè)體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績(jī),指出其中的總體與個(gè)體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績(jī)是總體,每一個(gè)學(xué)生的數(shù)學(xué)期末考試成績(jī)是個(gè)體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個(gè)體. 說明 強(qiáng)調(diào) 引領(lǐng) 觀察 思考 主動(dòng) 求解 通過例題進(jìn)一步領(lǐng)會(huì) 35

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.4 用樣本估計(jì)總體 *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 初中我們?cè)?jīng)學(xué)習(xí)過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個(gè)組內(nèi)的個(gè)數(shù). 【知識(shí)鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機(jī)抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點(diǎn),將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點(diǎn)數(shù)值時(shí)需要考慮分點(diǎn)值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計(jì)頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計(jì)3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 各組內(nèi)數(shù)據(jù)的個(gè)數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個(gè)數(shù)之比叫做該組的頻率. 計(jì)算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計(jì)301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對(duì)應(yīng)矩形的面積. 【想一想】 各小矩形的面積之和應(yīng)該等于1.為什么呢? 【新知識(shí)】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測(cè),去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計(jì)總體中某事件發(fā)生的概率.樣本選擇得恰當(dāng),這種估計(jì)是比較可信的. 如上所述,用樣本的頻率分布估計(jì)總體的步驟為: (1) 選擇恰當(dāng)?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計(jì)算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點(diǎn)并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計(jì)總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 25

  • 空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.

  • 傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    導(dǎo)語在必修第一冊(cè)中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識(shí),定性的研究了一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)增長(zhǎng)速度的差異,知道“對(duì)數(shù)增長(zhǎng)” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個(gè)問題。新知探究問題1 高臺(tái)跳水運(yùn)動(dòng)員的速度高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員在運(yùn)動(dòng)過程中的重心相對(duì)于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運(yùn)動(dòng)員從起跳到入水的過程中運(yùn)動(dòng)的快慢程度呢?直覺告訴我們,運(yùn)動(dòng)員從起跳到入水的過程中,在上升階段運(yùn)動(dòng)的越來越慢,在下降階段運(yùn)動(dòng)的越來越快,我們可以把整個(gè)運(yùn)動(dòng)時(shí)間段分成許多小段,用運(yùn)動(dòng)員在每段時(shí)間內(nèi)的平均速度v ?近似的描述它的運(yùn)動(dòng)狀態(tài)。

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(1)教學(xué)設(shè)計(jì)

    4.寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果.(1)一個(gè)袋中裝有8個(gè)紅球,3個(gè)白球,從中任取5個(gè)球,其中所含白球的個(gè)數(shù)為X.(2)一個(gè)袋中有5個(gè)同樣大小的黑球,編號(hào)為1,2,3,4,5,從中任取3個(gè)球,取出的球的最大號(hào)碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個(gè)紅球贏2元,而每取出一個(gè)白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個(gè)球全是紅球;X=1表示取1個(gè)白球,4個(gè)紅球;X=2表示取2個(gè)白球,3個(gè)紅球;X=3表示取3個(gè)白球,2個(gè)紅球.(2)X可取3,4,5.X=3表示取出的球編號(hào)為1,2,3;X=4表示取出的球編號(hào)為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號(hào)為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個(gè)球全是紅球;ξ=7表示取1個(gè)白球,4個(gè)紅球;ξ=4表示取2個(gè)白球,3個(gè)紅球;ξ=1表示取3個(gè)白球,2個(gè)紅球.

  • 人教版高中數(shù)學(xué)選修3分類變量與列聯(lián)表教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類變量與列聯(lián)表教學(xué)設(shè)計(jì)

    一、 問題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀(jì)錄和創(chuàng)紀(jì)錄的時(shí)間等,都是數(shù)值變量,數(shù)值變量的取值為實(shí)數(shù).其大小和運(yùn)算都有實(shí)際含義.在現(xiàn)實(shí)生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學(xué)校是否對(duì)學(xué)生的成績(jī)有影響,不同班級(jí)學(xué)生用于體育鍛煉的時(shí)間是否有差別,吸煙是否會(huì)增加患肺癌的風(fēng)險(xiǎn),等等,本節(jié)將要學(xué)習(xí)的獨(dú)立性檢驗(yàn)方法為我們提供了解決這類問題的方案。在討論上述問題時(shí),為了表述方便,我們經(jīng)常會(huì)使用一種特殊的隨機(jī)變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機(jī)變量稱為分類變量.分類變量的取值可以用實(shí)數(shù)表示,例如,學(xué)生所在的班級(jí)可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時(shí)候,這些數(shù)值只作為編號(hào)使用,并沒有通常的大小和運(yùn)算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(2)教學(xué)設(shè)計(jì)

    溫故知新 1.離散型隨機(jī)變量的定義可能取值為有限個(gè)或可以一一列舉的隨機(jī)變量,我們稱為離散型隨機(jī)變量.通常用大寫英文字母表示隨機(jī)變量,例如X,Y,Z;用小寫英文字母表示隨機(jī)變量的取值,例如x,y,z.隨機(jī)變量的特點(diǎn): 試驗(yàn)之前可以判斷其可能出現(xiàn)的所有值,在試驗(yàn)之前不可能確定取何值;可以用數(shù)字表示2、隨機(jī)變量的分類①離散型隨機(jī)變量:X的取值可一、一列出;②連續(xù)型隨機(jī)變量:X可以取某個(gè)區(qū)間內(nèi)的一切值隨機(jī)變量將隨機(jī)事件的結(jié)果數(shù)量化.3、古典概型:①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);②每個(gè)基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點(diǎn)數(shù)X有哪些值?取每個(gè)值的概率是多少? 因?yàn)閄取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

  • 人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第四課利率》教案說課稿

    小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第四課利率》教案說課稿

    2.過程與方法 培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐能力,使學(xué)生感受數(shù)學(xué)在生活中的作用。3.情感態(tài)度與價(jià)值觀結(jié)合實(shí)際對(duì)學(xué)生進(jìn)行思想品德教育,鼓勵(lì)學(xué)生節(jié)約用錢,支援貧困地區(qū)的失學(xué)兒童。 【教學(xué)重點(diǎn)】 理解本金、利率和利息的含義正確地計(jì)算利息。 【教學(xué)難點(diǎn)】 正確地計(jì)算利息?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法。【課前準(zhǔn)備】 多媒體課件【課時(shí)安排】 1課時(shí)【教學(xué)過程】(一)復(fù)習(xí)導(dǎo)入 1. 師:同學(xué)們,你們到銀行存錢或取過錢嗎?(課件第2張)人們?yōu)槭裁匆彦X存入銀行呢?生1:人們常常把暫時(shí)不用的錢存入銀行儲(chǔ)蓄起來。(課件第3張)生2:儲(chǔ)蓄不僅可以支援國(guó)家建設(shè),也使得個(gè)人錢財(cái)更安全,還可以增加一些收入。2.師:這節(jié)課我們就走進(jìn)銀行,來來學(xué)習(xí)“利率”的知識(shí)。(板書課題:利率)

  • 小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第四課比與比例》教案說課稿

    小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第四課比與比例》教案說課稿

    2.過程與方法 通過小組合作整理知識(shí)框架,提高學(xué)習(xí)的系統(tǒng)性,培養(yǎng)學(xué)生歸納、總結(jié)等自我復(fù)習(xí)能力及團(tuán)隊(duì)合作精神,加強(qiáng)生與生之間的合作學(xué)習(xí)能力和綜合運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際生活問題的能力。3.情感態(tài)度與價(jià)值觀在復(fù)習(xí)活動(dòng)中讓學(xué)生體驗(yàn)數(shù)學(xué)與生活實(shí)際的密切聯(lián)系,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生成功學(xué)習(xí)數(shù)學(xué)和自信心和創(chuàng)新意識(shí),滲透事物間是相互聯(lián)系的辯證唯物主義觀點(diǎn)?!窘虒W(xué)重點(diǎn)】 理解比和比例的意義、性質(zhì),掌握關(guān)于比和比例的一些實(shí)際運(yùn)用和計(jì)算。【教學(xué)難點(diǎn)】能理清知識(shí)間的聯(lián)系,建構(gòu)起知識(shí)網(wǎng)絡(luò)?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法。【課前準(zhǔn)備】

  • 小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課式與方程》教案說課稿

    小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課式與方程》教案說課稿

    1.整理用字母表示數(shù)。(1)梳理知識(shí):用字母表示數(shù)量關(guān)系:師:用字母可以表示什么?生:用字母表示運(yùn)算定律用字母表示計(jì)算公式用字母表示計(jì)算方法師:你能舉例說明嗎?生:字母表示 數(shù)量關(guān)系路程=速度×時(shí)間 s=vt總價(jià)=單價(jià)×數(shù)量 c=an工作總量=工作效率×工作時(shí)間 c=at(2)字母表示計(jì)算方法:+=(3)用字母表示計(jì)算公式。師:用字母可以表示哪些平面圖形的計(jì)算公式生:長(zhǎng)方形 周長(zhǎng) c=(a+b) ×2 面積:s=ab 正方形 周長(zhǎng) c=4a 面積:s=a2 平行四邊形 面積 s =ah三角形 面積 s=ah¸2 梯形 面積 s=(a+b)·h¸2 圓 周長(zhǎng)c=πd=2πr 面積 s=πr2(4)用字母表示運(yùn)算定律加法交換律 a+b=b+a 加法結(jié)合律 (a+b)+c=a+(b+c)乘法交換律 a×b=b×a乘法結(jié)合律 (a×b)×c=a×(b×c)乘法分配律 (a+b)×c=a×c+b×c2.在一個(gè)含有字母的式子里,數(shù)與字母、字母與字母相乘,書寫時(shí)應(yīng)注意的問題。師:在一個(gè)含有字母的式子里,數(shù)與字母、字母與字母相乘,書寫時(shí)應(yīng)注意什么?生交流:(1)在含有字母的式子里,數(shù)和字母中間的乘號(hào)可以用“?”代替,也可以省略不寫。(2)省略乘號(hào)時(shí),應(yīng)當(dāng)把數(shù)寫在字母的前面。(3)數(shù)與數(shù)之間的乘號(hào)不能省略。加號(hào)、減號(hào)、除號(hào)都不能省略。3. 典題訓(xùn)練(1)填一填。①李奶奶家本月用電a千瓦時(shí),比上個(gè)月多用10千瓦時(shí),上個(gè)月用電( )千瓦時(shí)。②如果每千瓦時(shí)電的價(jià)格是c元,李奶奶家本月的電費(fèi)是( )元。李奶奶家銀行繳費(fèi)卡上原有215元,扣除本月電費(fèi)后,還剩( )元。③小明今年m 歲,媽媽的歲數(shù)比她的3倍少6歲。媽媽的歲數(shù)是( )歲。如果m=12,媽媽今年是( )歲。④三個(gè)連續(xù)的自然數(shù),最大的一個(gè)是n,那么最小的一個(gè)數(shù)是( )。(2)連 一 連。比a多3的數(shù) a3比a少3的數(shù) 3a3個(gè)a相加的和 a+33個(gè)a相乘的積 a-3a的3倍 a的

  • 小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課解比例》教案說課稿

    小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課解比例》教案說課稿

    (一)觀圖激趣、設(shè)疑導(dǎo)入 師:同學(xué)們,今天和老師一起完成一個(gè)知識(shí)大比拼的游戲,(PPT課件出示)準(zhǔn)備好了嗎?1、填空。15∶3=(  )∶(  )2∶3=(  )÷(  )0.2=(  )∶2=(  )÷62、根據(jù)比例的基本性質(zhì),把下列各比改寫為乘法等式。3:8=15:40 x:4=1:2生:準(zhǔn)備好了。師:現(xiàn)在我們開始。師:今天和老師學(xué)習(xí)怎樣解比例。(板書課題:解比例)【設(shè)計(jì)意圖】這種方法的導(dǎo)入,讓學(xué)生更快、更集中注意力奔向主題,沒有渲染的成分,簡(jiǎn)單實(shí)用。(二)探究新知1、自學(xué)解比例的意義師:閱讀教材第42頁,理解什么叫做解比例。生:求比例中的未知項(xiàng)叫做解比例。教師板書:求比例中的未知項(xiàng)叫做解比例。2、學(xué)習(xí)例2,應(yīng)用比例的基本性質(zhì)解比例。(1)出示例2的PPT課件。法國(guó)巴黎的埃菲爾鐵塔高度約320 m。北京的世界公園里有一座埃菲爾鐵塔的模型,它的高度與原塔高度的比是1∶10。這座模型高多少米?(2)理解題意,弄清模型的高度∶原塔高度=1∶10。師:同學(xué)們,你是怎樣理解題目中1∶10的?生:題目中告訴我們1∶10是埃菲爾鐵塔模型的高度與原塔高度的比。師:你能根據(jù)題意寫出比例關(guān)系式嗎?生:根據(jù)題意列比例關(guān)系式:模型的高度∶原塔高度=1∶10。師:這個(gè)關(guān)系式用數(shù)字該怎樣表示?生:老師,在這個(gè)比例中我只知道三個(gè)數(shù)字,模型的高度的數(shù)量我不知道是幾呀?師:這位同學(xué)觀察得很仔細(xì),哪位同學(xué)愿意幫助他解決這個(gè)問題?生:老師我想用字母x代替模型高度的數(shù)量,您看可以嗎?師:好的,你的想法非常的好,也很正確!師:題目中告訴我們?cè)叨仁嵌嗌?生:320 m。

  • 小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課稅率》教案說課稿

    小學(xué)數(shù)學(xué)人教版六年級(jí)下冊(cè)《第三課稅率》教案說課稿

    (一)復(fù)習(xí)導(dǎo)入 1. 師:同學(xué)們,你們?nèi)ミ^這些景區(qū)嗎?(課件第2張)鳥巢、水立方、市容衛(wèi)生、綠化建設(shè)、城市規(guī)劃建設(shè)、航天事業(yè)的發(fā)展。 2.師:我國(guó)的經(jīng)濟(jì)建設(shè)日新月異,人民生活的不斷提高,基礎(chǔ)建設(shè)全面展開。你知道這些設(shè)施的費(fèi)用是從哪兒來的嗎?生:這些設(shè)施的費(fèi)用都是政府投資的,是國(guó)家出錢建設(shè)的。師:國(guó)家的錢又是從哪兒來的?生:國(guó)家的財(cái)源主要來自稅收。3.導(dǎo)出納稅、稅率。(課件第3張)生1:納稅是根據(jù)國(guó)家稅法的有關(guān)規(guī)定,按照一定的比率把集體或個(gè)人收入的一部分繳納給國(guó)家。生2:稅收是國(guó)家收入的主要來源之一。國(guó)家用收來的稅款發(fā)展經(jīng)濟(jì)、科技、教育、文化和國(guó)防等事業(yè)。生3:每個(gè)公民都有依法納稅的義務(wù)哦!這節(jié)課我們就來學(xué)習(xí)有關(guān)稅收的知識(shí)。板書課題:稅率【設(shè)計(jì)意圖】 聯(lián)系學(xué)生的生活實(shí)際,使學(xué)生知道每個(gè)公民都有依法納稅的義務(wù),增強(qiáng)學(xué)生的納稅意識(shí)。(二)探究新知 1、探究稅率的含義。(課件第4張)(1)你知道哪些納稅項(xiàng)目?應(yīng)該怎樣繳納稅款呢?生1:稅收主要分為消費(fèi)稅、增值稅、營(yíng)業(yè)稅和個(gè)人所得稅等幾類。生2:繳納的稅款叫做應(yīng)納稅額,應(yīng)納稅額與各種收入(銷售額、營(yíng)業(yè)額……)的比率叫做稅率。2、探索應(yīng)納稅額的計(jì)算。(課件第5張)(1)有一家飯店10月份的營(yíng)業(yè)額是30萬元,如果按營(yíng)業(yè)額的5%繳納營(yíng)業(yè)稅,這家飯店10月份應(yīng)繳納營(yíng)業(yè)稅多少萬元?(2)小組討論:你是怎樣想的?說說你的思考過程。(3)匯報(bào)交流:(課件第6張)生1:繳納的營(yíng)業(yè)稅是營(yíng)業(yè)額的5%。生2:求營(yíng)業(yè)額的5%是多少,用乘法計(jì)算。生3:30×5%=1.5(萬元)答:這家飯店10月份應(yīng)繳納營(yíng)業(yè)稅1.5萬元。3、做一做。(課件第7張)(1)李阿姨的月工資是5000元,扣除3500元個(gè)稅免征額后的部分需要按3%的稅率繳納個(gè)人所得稅。她應(yīng)繳個(gè)人所得稅多少元?小組合作:你會(huì)做嗎?說說你的想法。匯報(bào)交流:(課件第8張)生1:“扣除3500元個(gè)稅免征額后的部分”這句話是什么意思?生2:要從工資總數(shù)里減去3500元,剩下的錢按3%的稅率繳稅。生3:(5000-3500)×3%=1500×0.03=45(元)答:她應(yīng)繳個(gè)人所得稅45元。 (2)計(jì)算某商場(chǎng)5月份商品零售營(yíng)業(yè)稅。(課件第9張) 你會(huì)做嗎?說說你的想法。小組合作:你是怎樣想的?說說你的思考過程。(課件第10張)匯報(bào)交流:(課件第11張)生:先求總營(yíng)業(yè)額,再求營(yíng)業(yè)稅。 72+35+46+21+56=230(萬元)230×5%=1.15(萬元) 答:這個(gè)商場(chǎng)5月份商品零售營(yíng)業(yè)稅是1.15萬元。 (3)豐華商場(chǎng)9月份按規(guī)定繳了1.85萬元的營(yíng)業(yè)稅,他們納稅的稅率是5%。這個(gè)商場(chǎng)9月份的營(yíng)業(yè)額是多少萬元?(課件第12張)生1:把營(yíng)業(yè)額看做單位“1”,求營(yíng)業(yè)額,做除法。生2:1.85÷5%=1.85÷0.05=370(萬元)答:這個(gè)商場(chǎng)9月份的營(yíng)業(yè)額是370萬元。生3:把營(yíng)業(yè)額看做單位“1”,求營(yíng)業(yè)額,也可以列方程解答。(課件第13張)解:設(shè)這個(gè)商場(chǎng)9月份的營(yíng)業(yè)額是x萬元。

上一頁123...109110111112113114115116117118119120下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!