【設(shè)計思路】新課程十分強調(diào)科學(xué)探究在科學(xué)課程中的作用,應(yīng)該說科學(xué)探究是這次課程改革的核心。我覺得:科學(xué)探究不一定是要讓學(xué)生純粹地通過實驗進(jìn)行探究,應(yīng)該說科學(xué)探究是一種科學(xué)精神,學(xué)生只要通過自己的探索和體驗,變未知為已知,這樣的教學(xué)活動也是科學(xué)探究。本節(jié)課是概念教學(xué)課,讓學(xué)生純粹地通過實驗進(jìn)行探究是不太合適的。但通過學(xué)生自己的探索和體驗,變未知為已知還比較合適。本節(jié)課的設(shè)計就是基于這樣的出發(fā)點,在引出加速度的概念時低臺階,步步深入,充分激活學(xué)生的思維,是學(xué)生思維上的探究。通過復(fù)習(xí)前邊速度時間圖像,從而得到從圖像上得到加速度的方法,為加深加速度概念和相關(guān)知識的理解有配套了相應(yīng)練習(xí)題目,做到強化練習(xí)的目的?!窘虒W(xué)目標(biāo)】知識與技能1.理解加速度的意義,知道加速度是表示速度變化快慢的物理量.知道它的定義、公式、符號和單位,能用公式a=△v/△t進(jìn)行定量計算.2.知道加速度與速度的區(qū)別和聯(lián)系,會根據(jù)加速度與速度的方向關(guān)系判斷物體是加速運動還是減速運動.3.能從勻變速直線運動的v—t圖象理解加速度的意義.
【設(shè)計思路】新課程十分強調(diào)科學(xué)探究在科學(xué)課程中的作用,應(yīng)該說科學(xué)探究是這次課程改革的核心。我覺得:科學(xué)探究不一定是要讓學(xué)生純粹地通過實驗進(jìn)行探究,應(yīng)該說科學(xué)探究是一種科學(xué)精神,學(xué)生只要通過自己的探索和體驗,變未知為已知,這樣的教學(xué)活動也是科學(xué)探究。本節(jié)課是概念教學(xué)課,讓學(xué)生純粹地通過實驗進(jìn)行探究是不太合適的。但通過學(xué)生自己的探索和體驗,變未知為已知還比較合適。本節(jié)課的設(shè)計就是基于這樣的出發(fā)點,在引出加速度的概念時低臺階,步步深入,充分激活學(xué)生的思維,是學(xué)生思維上的探究。通過復(fù)習(xí)前邊速度時間圖像,從而得到從圖像上得到加速度的方法,為加深加速度概念和相關(guān)知識的理解有配套了相應(yīng)練習(xí)題目,做到強化練習(xí)的目的。【教學(xué)目標(biāo)】知識與技能1.理解加速度的意義,知道加速度是表示速度變化快慢的物理量.知道它的定義、公式、符號和單位,能用公式a=△v/△t進(jìn)行定量計算.2.知道加速度與速度的區(qū)別和聯(lián)系,會根據(jù)加速度與速度的方向關(guān)系判斷物體是加速運動還是減速運動.
本來比較速度變化的快慢也有兩種方法:一種是比較相同時間內(nèi)速度變化量的大小;另一種是比較發(fā)生相同的速度變化所需要的時間長短。但教材是將比較質(zhì)點位置移動快慢的思想直接遷移過來,通過實例分析,使學(xué)生明白不同運動物體的速度變化快慢不同,表現(xiàn)在速度的變化與發(fā)生這個變化所用時間的比值不同,從而引入加速度的定義方法a=△v/△t。加速度表示速度的變化快慢,包括速度增加的快慢和減小的快慢,不能誤認(rèn)為只要有加速度的運動速度就一定是增加的。廣義地講,加速度不僅可以描述速度大小的變化快慢,而且也可以描述速度方向變化的快慢,本節(jié)教材只限定在直線運動的情景中討論。加速度的矢量性是一個難點,教材是以與速度方向相同或是相反來表述加速度的矢量性的。如果以初速度方向為正方向,那么加速度就有正負(fù)之分,加速度的正負(fù)表示加速度的方向,不表示加速度的大小。
一、教材解析《桂枝香·金陵懷古》選自統(tǒng)教版必修下冊古詩詞誦讀單元,此詞通過對金陵景物的贊美和歷史興亡的感喟,寄托了作者對當(dāng)時朝政的擔(dān)憂和對國家政治大事的關(guān)心。全詞情景交融,境界雄渾闊大,風(fēng)格沉郁悲壯,把壯麗的景色和歷史內(nèi)容和諧地融合在一起,自成一格,堪稱名篇。二、學(xué)情分析高中一年級的學(xué)生已具有一定的詩歌閱讀鑒賞能力,對學(xué)生來說,最重要的是積累誦讀方法,提升鑒賞能力。在本文的教學(xué)過程中著重落實“讀”,通過多樣化的“讀”,提升對詩歌“美”的感悟鑒賞能力。三、教學(xué)目標(biāo)從課程標(biāo)準(zhǔn)中“全面提高學(xué)生語文素養(yǎng)”的基本理念出發(fā),我設(shè)計了以下教學(xué)目標(biāo):1.語言建構(gòu)與運用:疏通疑難字詞,讀懂詩句體會詞的誦讀要領(lǐng)。
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學(xué)好這部分的知識對于學(xué)生進(jìn)一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識的關(guān)系,分析辯證否定的實質(zhì)是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關(guān)。
活動內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒有其他的證明方法呢?這個題還可以用“內(nèi)錯角相等,兩直線平行”來證.
活動內(nèi)容:教師首先讓學(xué)生回顧學(xué)過的三類事件,接著讓學(xué)生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認(rèn)為正面朝上和正面朝下的可能性相同嗎?(讓學(xué)生體驗數(shù)學(xué)來源于生活)。活動目的:使學(xué)生回顧學(xué)過的三類事件,并由擲硬幣游戲培養(yǎng)學(xué)生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學(xué)生體會猜測結(jié)果,這是很重要的一步,我們所學(xué)到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。
1、方程的定義1)像這種用等號“=”來表示相等關(guān)系的式子,叫等式。(老師給出定義。)2)請大家觀察左邊的這些式子,看看它們有什么共同的特征?(老師提出問題。)3)列方程時,要先設(shè)字母表示未知數(shù),然后根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式叫做方程。(學(xué)生思考后,老師給出新學(xué)內(nèi)容方程的定義。)4)判斷方程的兩個關(guān)鍵要素: ①有未知數(shù) ②是等式(老師提問,并給出。)
1、問題1的設(shè)計基于學(xué)生已有的一元一次方程的知識,學(xué)生獨立思考問題,同學(xué)會考慮到題中涉及到等量關(guān)系,從中抽象出一元一次方程模型;同學(xué)可能想不到用方程的方法解決,可以由組長帶領(lǐng)進(jìn)行討論探究.2、問題2的設(shè)計為了引出二元一次方程,但由于同學(xué)的知識有限,可能有個別同學(xué)會設(shè)兩個未知數(shù),列出二元一次方程;如果沒有生列二元一次方程,教師可引導(dǎo)學(xué)生分析題目中有兩個未知量,我們可設(shè)兩個未知數(shù)列方程,再次從中抽象出方程模型.根據(jù)方程特點讓生給方程起名,提高學(xué)生學(xué)習(xí)興趣.3、定義的歸納,先請同學(xué)們觀察所列的方程,找出它們的共同點,并用自己的語言描述,組內(nèi)交流看法;如果學(xué)生概括的不完善,請其他同學(xué)補充. 交流完善給出定義,教師規(guī)范定義.
教學(xué)目標(biāo)1、明確扇形統(tǒng)計圖的制作步驟,能夠根據(jù)相關(guān)數(shù)據(jù)較為準(zhǔn)確地制作扇形統(tǒng)計圖.2、進(jìn)一步理解扇形統(tǒng)計圖的特點,建立百分比大小和扇形圓心角大小之間初步的直觀敏感度.3、能夠?qū)崿F(xiàn)不同統(tǒng)計圖數(shù)據(jù)間的合理轉(zhuǎn)換,再次體會幾種統(tǒng)計圖的不同特點,為合理選擇統(tǒng)計圖表示數(shù)據(jù)打下一定的基礎(chǔ).4、通過實例,理解三種統(tǒng)計圖的特點,能根據(jù)具體問題選擇合適的統(tǒng)計圖清晰、有效地描述數(shù)據(jù).5、在統(tǒng)計活動的過程中,通過相互間的合作與交流,掌握畫統(tǒng)計圖和選擇統(tǒng)計圖的方法;經(jīng)歷數(shù)據(jù)的收集、整理和簡單分析、作出決策的統(tǒng)計活動過程,發(fā)展統(tǒng)計觀念.6、通過對現(xiàn)實生活中的數(shù)據(jù)分析,感受數(shù)學(xué)與現(xiàn)實生活的密切聯(lián)系,說出統(tǒng)計圖在現(xiàn)實生活中的應(yīng)用,提高學(xué)習(xí)數(shù)學(xué)興趣.
小學(xué)五年級的學(xué)生應(yīng)該具備一些生活技能, 學(xué)做家常菜是我們生活的必需,是每個,人都應(yīng)該掌握的生存技能。本主題的目的通過學(xué)習(xí)做簡單的家常菜,引領(lǐng)小學(xué)生走進(jìn)家務(wù)勞動,鍛煉生活的自理能力和提高適應(yīng)生活的能力,體會生活和學(xué)習(xí)的樂趣,激發(fā)學(xué)生將學(xué)校學(xué)習(xí)和家務(wù)勞動密切結(jié)合起來,形成積極的生活和學(xué)習(xí)的態(tài)度。本主題安排了“問題與思考”“學(xué)習(xí)與探究”“實踐與體驗”總結(jié)與交流“拓展與創(chuàng)新”五個環(huán)節(jié),從提出問題開始,到探究與體驗,最后到學(xué)有所用,循序漸進(jìn),引導(dǎo)學(xué)習(xí)走進(jìn)中式餐飲文化,學(xué)做日常生活中的家常菜,掌握勞動的技能和方法,體驗做家務(wù)勞動帶來的快樂和享受,激發(fā)學(xué)生對家常菜的探究與實踐的興趣,逐步掌握日常生活所需的基本技能,培養(yǎng)熱愛勞動、熱愛生活的意識。
我們不妨將主旨放在“莊生曉夢迷蝴蝶,望帝春心托杜鵑。滄海月明珠有淚,藍(lán)田日暖玉生煙?!倍?lián)之前,那么,事情就變得簡單起來了:華年如莊生曉夢迷蝴蝶;華年如望帝春心托杜鵑;華年如滄海月明珠有淚;華年如藍(lán)田日暖玉生煙。從課下注釋,我們很容易就可以看出,這四句每一句都在用典。因此,我們通過對典故的解讀,然后加以整理,將其理順,似乎就可以完成對詩歌內(nèi)容的解讀;至于什么悼亡、愛情,不妨拋之腦后,畢竟,沒有那些其他的主題,也并沒有讓詩歌失色,而加上這些捉摸不定的主題,只是讓詩歌增加了所謂的神秘色彩,徒增閱讀難度而已。
中班的幼兒開始愿意探究新異的事物或現(xiàn)象來滿足自己的好奇心,所以,我們的科學(xué)活動設(shè)計要在淺顯易懂,適合中班幼兒年齡特征的同時,引發(fā)幼兒對科學(xué)的初步探究能力。中班的幼兒已經(jīng)具有注意到新異事物或現(xiàn)象的,因此,我們在設(shè)計科學(xué)活動時要讓幼兒充分發(fā)揮想象,對磁鐵這種“新異”事物提出問題,如什么是磁鐵?什么時候看見過磁鐵?等等類似的問題,可以增強幼兒的探索興趣,提高幼兒的探索的積極性,有利于激發(fā)幼兒的想象力?! ≈邪嘤變褐饕跃唧w形象為主,需要具體的活動場景和活動形式,所以活動設(shè)計要提供幼兒合適的情景以提供操作思考的機(jī)會,進(jìn)一步發(fā)展幼兒的自主性和主動性。中班幼兒與小班幼兒相比,活動時間也有所增加,因此也需要在活動時間上給予一定的保證。
教法分析:在新課程的教學(xué)中教師要向?qū)W生提供從事數(shù)學(xué)活動的機(jī)會,倡導(dǎo)讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,鼓勵學(xué)生自主探索與合作交流,讓學(xué)生在實踐中體驗、學(xué)習(xí)。因此,本節(jié)課我采用了多媒體輔助教學(xué)與學(xué)生動手操作、觀察、討論的方式,一方面能夠直觀、生動地反映各種圖形的特征,增加課堂的容量,吸引學(xué)生注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;另一方面也有利于突出重點、突破難點,更好地提高課堂效率。學(xué)法分析:初二年級學(xué)習(xí)對新事物比較敏感,通過新課程教學(xué)的實施,學(xué)生已具有一定探索學(xué)習(xí)與合作交流的習(xí)慣。但是一下子要學(xué)生從直觀的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導(dǎo)學(xué)生:一要善于觀察發(fā)現(xiàn);二要勇于探索、動手實驗;三要把自己的所思所想大膽地進(jìn)行交流,從而得出正確的結(jié)論,并掌握知識。
教師活動 學(xué)生活動設(shè)計意圖 情境導(dǎo)入:教師配樂敘述詩歌創(chuàng)作背景投入傾聽 盡可能調(diào)動學(xué)生情緒誦讀入境:“讀李詩者于雄快之中得其深遠(yuǎn)宕逸之神,才是謫仙人面目”(投影展示)教師范讀,醞釀情感(播放配樂)1、學(xué)生自讀感知詩韻 2、學(xué)生齊讀進(jìn)入詩境 調(diào)動學(xué)生積極性,誦讀時用自己的情緒感染學(xué)生精讀涵詠:教師就詩歌內(nèi)容進(jìn)行提問,李白怎樣喝酒,勸朋友喝酒的方式、原因,他有那些愁并說明理由,并按照自己的理解誦讀。教師必要時給出相應(yīng)的提示。投影展示:人生苦短 懷才不遇 交流研討誦讀 引導(dǎo)學(xué)生從詩句入手,疏通詩意,把握情感
(一)知識與能力 1、指導(dǎo)學(xué)生基本掌握誦讀本詩的要領(lǐng),培養(yǎng)學(xué)生聲情并茂、準(zhǔn)確傳達(dá)情感的誦讀能力. 2、幫助學(xué)生初步了解“初讀—精讀—悟讀—美讀”的詩歌鑒賞方法,培養(yǎng)學(xué)生鑒賞古典詩歌的能力。(二)、情感態(tài)度與價值觀 1、走近李白的激情、浪漫、詩性和放達(dá),感受全詩恢宏的氣魄。 2、激發(fā)學(xué)生與文本、文人和文化的親近之情
《錦瑟》的主旨頗多,悼亡、戀情、自傷身世,每一種都有其支持者的長篇論述,但其首聯(lián)中“一弦一柱思華年?!睆倪@個角度來看,似乎將主題定調(diào)為對“華年”的追思,似乎更為妥帖。當(dāng)我們有了一個明確的基調(diào)之后,后面幾聯(lián)在解讀時就有了一個準(zhǔn)確的方向。
教學(xué)目標(biāo)1.能從實際問題中得到函數(shù)關(guān)系式,學(xué)會積累函數(shù)的建模思想;2.能對不同背景下函數(shù)模型(關(guān)系式)的比較,抽象出一次函數(shù)和正比例函數(shù)的概念,發(fā)展抽象思維及概括能力;3.初步理解一次函數(shù)與正比例函數(shù)的概念;4.知道一次函數(shù)與正比例函數(shù)的聯(lián)系和區(qū)別,體驗特殊和一般的辯證關(guān)系;5.會判斷兩個變量之間的關(guān)系是一次函數(shù)還是正比例函數(shù);6.能根據(jù)問題信息,確定一次函數(shù)與正比例函數(shù)的表達(dá)式,提升數(shù)學(xué)應(yīng)用能力;7.會根據(jù)一次函數(shù)與正比例函數(shù)的概念,求字母的取值;8.在一次函數(shù)和正比例函數(shù)概念的形成與應(yīng)用過程中, 體驗函數(shù)與人類生活的密切聯(lián)系,增強對函數(shù)學(xué)習(xí)的求知。感受合作交流的必要性,同時提高學(xué)生的觀察、抽象、概括的能力和語言表達(dá)能力,從而培養(yǎng)學(xué)生對學(xué)習(xí)數(shù)學(xué)的興趣。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關(guān)鍵點的橫坐標(biāo),分別令,,,,,求出對應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對應(yīng)五個關(guān)鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點 15
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點 40