得出這樣便于口算的道理,也為幫助學(xué)生探索“兩位數(shù)乘兩位數(shù)”的豎式計算方法埋下了伏筆。與此同時也允許學(xué)生把12用他們認為更便于計算的方法進行計算。另一種是直接用豎式計算。豎式的擺法學(xué)生肯定沒問題,對于第一步如何計算也難不倒學(xué)生,關(guān)鍵是第二步、第三步,通過學(xué)生自己探索算法,讓學(xué)生弄清第二步、第三步為什么這樣寫?根據(jù)學(xué)生的匯報,強調(diào)書寫格式并板書,用個位上的2去乘24,乘得的積是表示48個一,積的末尾要和個位對齊;用十位上的1去乘24,乘得的積表示24個十,乘得積的末尾要和十位對齊(個位上的0省略不寫);最后把兩次乘得的積相加。(這樣利用遷移原理,使學(xué)生一步一步地加深對算理和算法的認識和理解,不但突出了教學(xué)重點,而且突破了教學(xué)難點。)3、教師點撥:筆算乘法時:(1)從個位乘起,先用第二個因數(shù)的個位上的數(shù)依次去乘第一個因數(shù)的每一位上的數(shù),得數(shù)末位和第一個因數(shù)的個位對齊;
一、教材分析:《名數(shù)的改寫》是四年級下冊小數(shù)的意義和性質(zhì)的內(nèi)容。該內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了利用小數(shù)點位置移動引起小數(shù)的大小變化規(guī)律的基礎(chǔ)上進行教學(xué)的。本信息窗呈現(xiàn)的是一只天鵝從出生到長大體重變化的情況。圖中用文字標(biāo)出了具體的變化數(shù)據(jù)。主要通過引導(dǎo)學(xué)生解答天鵝體重變化的問題,讓學(xué)生體會到單位不相同,必須改寫成相同的單位,展開對名數(shù)改寫知識的學(xué)習(xí)。二、教學(xué)目標(biāo)根據(jù)上述對教材的分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我確立了本課的教學(xué)目標(biāo)為:知識與技能方面:會利用移動小數(shù)點的位置來進行名數(shù)改寫。理解知識間聯(lián)系,提高學(xué)生運用所學(xué)知識解決問題的能力。過程與方法方面:利用小數(shù)點位置移動引起小數(shù)大小變化的規(guī)律和名數(shù)改寫的基本方法,引導(dǎo)學(xué)生進行知識遷移,從而掌握利用小數(shù)點的位置移動進行名數(shù)改寫的方法。
比較2和3兩個算式:這兩個算式的不同?請學(xué)生具體解釋一下270-180為什么要用括號?讓學(xué)生體會到解決問題的思路不同,解決方法也不同,計算的步數(shù)也是不同的。(再請學(xué)生分別說說這兩個算式的計算過程,每一步的含義。)小結(jié):括號是用來改變運算順序的。當(dāng)你列出的綜合算式的運算順序與實際需要的運算順序不相符時,就用括號來改變運算順序。比如(擦去(270-180)÷30中的括號)這樣的算式中先算什么?按照混合運算順序的規(guī)定是不能先算270-180的,要想先算這部分就要用括號把這一步括起來。這個算式才正確表示了我們解決問題的方法步驟。(設(shè)計意圖:在這個環(huán)節(jié)中,在自主探索的基礎(chǔ)上,教師給學(xué)生提供充分表達自己見解的機會,闡述自己得出的結(jié)論探究過程及疑難問題。然后根據(jù)學(xué)生反饋的信息,組織、引導(dǎo)學(xué)生通過個體發(fā)言、小組討論、辯論等多種形式進行辨析評價,使學(xué)生的認知結(jié)構(gòu)更加穩(wěn)定和完善。)
一、說教材該內(nèi)容是人教版小學(xué)數(shù)學(xué)四年級第八冊第四單元的最后一個內(nèi)容,是在學(xué)生已經(jīng)掌握了把整萬、整億數(shù)改寫成用萬或億作單位的數(shù)的基礎(chǔ)上進行教學(xué)的。通過本節(jié)課的學(xué)習(xí),要使學(xué)生能通過獨立思考、合作交流,掌握把大數(shù)目改寫成用“萬”或“億”作單位的數(shù)的方法,為以后能準確、恰當(dāng)?shù)剡\用數(shù)目描述生活現(xiàn)象打下良好的基礎(chǔ)。根據(jù)本課的內(nèi)容和學(xué)生已有的知識和心理特征,我制訂如下教學(xué)目標(biāo):1、掌握把較大數(shù)改寫成用“萬”或“億”作單位的數(shù)的方法,并能根據(jù)要求保留一定的小數(shù)位數(shù)。2、經(jīng)歷將一個數(shù)改寫成用“萬”或“億”作單位的數(shù)的過程,體驗數(shù)據(jù)記法的多樣性。3、感受數(shù)學(xué)知識的應(yīng)用性。理解和掌握把較大的數(shù)改寫成用“萬”或“億”作單位的小數(shù)的方法是本課的教學(xué)重點。位數(shù)不夠用0補足是本節(jié)課的難點。
一 說教材運算定律和簡便計算的單元復(fù)習(xí)是人教版第八冊第三單元內(nèi)容,屬于“數(shù)與代數(shù)”領(lǐng)域。本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了運算定律(加法交換律、加法結(jié)合律、乘法交換律、乘法結(jié)合律和乘法分配律)以及基本的簡便計算方法(連減、連除)基礎(chǔ)上進行的整理復(fù)習(xí)課。二、說教學(xué)目標(biāo)及重難點1、通過復(fù)習(xí)、梳理,學(xué)生能熟練掌握加法、乘法等運算定律,能運用運算定律進行簡便計算。2、培養(yǎng)學(xué)生根據(jù)實際情況,選擇算法的能力,能靈活地解決現(xiàn)實生活中的簡單實際問題。教學(xué)重點:理解并熟練掌握運算定律,正確進行簡便計算。教學(xué)難點:根據(jù)實際,靈活計算。三、說教法學(xué)法根據(jù)教學(xué)目標(biāo)及重難點,采用小組合作、自主探究、動手操作的學(xué)習(xí)方式。四、說教學(xué)過程
4、實際生活中的應(yīng)用。提問學(xué)生:小數(shù)點位置移動引起小數(shù)大小的變化這規(guī)律在學(xué)習(xí)和生活有什么應(yīng)用?(讓學(xué)生思考在學(xué)習(xí)中,點錯小數(shù)點的位置,小數(shù)的大小就不一樣了。如果在銀行統(tǒng)計時點錯右漏寫小數(shù)點會怎樣?)教育學(xué)生做事認真細心。(四)小結(jié)質(zhì)疑,自我評價這節(jié)課我們學(xué)習(xí)了什么?小數(shù)點位置移動引起小數(shù)大小的變化規(guī)律是怎樣的?質(zhì)疑:對今天的學(xué)習(xí)還有什么疑問嗎?(培養(yǎng)學(xué)生敢于質(zhì)疑,勇于創(chuàng)新的精神)評價:首先自評,學(xué)生對自己學(xué)得怎樣,用什么方法學(xué)習(xí),印象最深的內(nèi)容是什么進行評介。接著可以生生互評或師生互評,教師重點表揚大部分學(xué)得好的同學(xué)或全班的同學(xué),增強學(xué)生的自信心和榮譽感,使他們更加熱愛數(shù)學(xué)。(五)作業(yè)布置:1、回憶一遍操作探索發(fā)現(xiàn)規(guī)律的整個過程,進一步培養(yǎng)學(xué)生良好的學(xué)習(xí)方法和習(xí)慣。2、預(yù)習(xí)97頁,例2和例3,做書上98頁練習(xí)第三題。
(4)驗算師:小數(shù)加減計算很輕易出錯,你有什么方法檢驗計算的結(jié)果?(假如有困難,教師再提示一下)(三)鞏固應(yīng)用、內(nèi)化提高 剛才的學(xué)生剛剛體會到了成功的喜悅,在此基礎(chǔ)上,我安排了三個層次的練習(xí)。1. 基本練習(xí),出幾道直接寫得數(shù)的一位小數(shù)加減法的題,讓學(xué)生掌握本課的基礎(chǔ)知識。2. 綜合練習(xí),是課后做一做1,鞏固新知識,發(fā)展學(xué)生思維的機智性與靈活性。3. 提高練習(xí),課后做一做2這是小數(shù)加減法的兩步應(yīng)用題,這樣既培養(yǎng)了學(xué)生運用知識的能力,有培養(yǎng)了學(xué)生的創(chuàng)新能力?!驹O(shè)計意圖】這樣的練習(xí)的設(shè)計有密度,有坡度,形式多樣,而且具有層次性。不僅鞏固了學(xué)生的計算能力,而且還培養(yǎng)了學(xué)生的應(yīng)用能力。在這個環(huán)節(jié)中,還讓學(xué)生開展了自我評價、生生互評等。大大提高了學(xué)生學(xué)習(xí)的積極性。(四)回顧整理,反思提升通過今天的學(xué)習(xí),你都有哪些收獲?
1.揭示課題那么,這個運算定律是否對分數(shù)加法也適用呢?現(xiàn)在我們就來研究這個問題。板書課題:整數(shù)加法運算定律推廣到分數(shù)加法。2.研究運算定律對分數(shù)加法的適用性出示式題:提問:上面每組算式的左右兩邊有什么關(guān)系?得數(shù)是否相等?先指名學(xué)生練習(xí),算出得數(shù)后,再引導(dǎo)學(xué)生觀察。提問:這兩組試題有何共同之處?組織學(xué)生開展小組討論,共同概括總結(jié)出他們的共同點,得出規(guī)律性的認識,從而使學(xué)生體會到整數(shù)加法運算定律,對分數(shù)加法同樣適用。通過討論明確:加法的交換律、結(jié)合律中的數(shù),既包括了整數(shù),又包括了小數(shù)和分數(shù)?!驹O(shè)計意圖】通過具體的實踐活動,直觀感知了加法運算定律同樣也適用于分數(shù)加法。這種通過自己實踐得來的東西,學(xué)生理解得更透,掌握得更牢。
一、說教材(一)教材簡析《假分數(shù)化成整數(shù)或帶分數(shù)》是小學(xué)數(shù)學(xué)五年級(下冊)第六單元中的內(nèi)容。本節(jié)內(nèi)容安排了兩個例題。這部分內(nèi)容是在學(xué)生掌握了假分數(shù)的意義后,進一步學(xué)習(xí)把假分數(shù)化成整數(shù)或帶分數(shù),有利于以后進行分數(shù)計算打下堅實的基礎(chǔ)。(二)教學(xué)目標(biāo)根據(jù)教材編排特點,我確定以下教學(xué)目標(biāo):1、知道帶分數(shù)是假分數(shù),是整數(shù)與真分數(shù)合成的數(shù)。2、會把假分數(shù)化成整數(shù)或帶分數(shù)。3、使學(xué)生經(jīng)歷假分數(shù)化成整數(shù)或帶分數(shù)的探索過程,進一步發(fā)展數(shù)感。4、培養(yǎng)良好的學(xué)習(xí)習(xí)慣,樹立學(xué)好數(shù)學(xué)的信心。(三)教學(xué)重、難點會把假分數(shù)化成整數(shù)或帶分數(shù)。二、說教法、學(xué)法通過這一環(huán)節(jié)的教學(xué),把假分數(shù)化成整數(shù)或帶分數(shù)時,先要讓學(xué)生根據(jù)假分數(shù)的含義進行思考。在這個基礎(chǔ)上,再啟發(fā)學(xué)生根據(jù)分數(shù)與除法的關(guān)系計算出結(jié)果,并把用不同方法求得的結(jié)果進行比較,認識到每種方法都是有道理的。
4、簡單小結(jié),內(nèi)化知識引導(dǎo)學(xué)生總結(jié)出學(xué)習(xí)的課題(教師板書),學(xué)生再明確表達出“同分母分數(shù)加減混合運算的順序與證書加減混合運算的順序完全相同,計算方法與同分母分數(shù)加減法的計算方法相同,即分母不變,分子相加減。注意能月份的一定要約成最簡分數(shù)為止。”,(三)鞏固練習(xí)、拓展應(yīng)用1、基礎(chǔ)練習(xí)2、引申練習(xí)3、解決實際問題 【精心設(shè)計練習(xí),既有與例題程度相當(dāng)?shù)摹氨5住鳖},又有與生活密切相關(guān)的變式題,拓展思維,培養(yǎng)創(chuàng)新意識,展現(xiàn)數(shù)學(xué)的應(yīng)用價值,讓學(xué)生體會到學(xué)習(xí)數(shù)學(xué)有用,生活處處離不開數(shù)學(xué)。同時適時進行環(huán)保教育和愛國主義教育,起到了教書育人的作用。】五、說板書設(shè)計此板書力圖板書的簡潔美,能突出教學(xué)的重難點,提示了方法過程。
(一)教學(xué)內(nèi)容:我說課的內(nèi)容是第5單元中內(nèi)容,(二)教材地位:加法是數(shù)學(xué)中最基本的運算之一。從教材的縱向聯(lián)系來看,幾年前已學(xué)過整數(shù)加法和小數(shù)加法,以及加法的運算定律,知道它不僅適用于整數(shù)加法,而且也適用于小數(shù)加法。那么是否也適用于現(xiàn)在所學(xué)習(xí)的分數(shù)加法呢?這就是我們這節(jié)課要研究的問題,當(dāng)然,結(jié)果是肯定的。通過本課的學(xué)習(xí),將整數(shù)加法的運算定律推廣到分數(shù)加法,可使學(xué)生對加法的認識從感性上升到理性。為后面學(xué)習(xí)分數(shù)加法的簡便計算打好基礎(chǔ),同時也為學(xué)習(xí)小數(shù)、分數(shù)混合運算奠定基礎(chǔ)。其次,將整數(shù)加法的運算定律推廣到分數(shù)加法,也拓展了加法運算定律的使用范圍,豐富其內(nèi)涵。而且加法運算定律字母表示形式,為以后代數(shù)知識的學(xué)習(xí)奠定了初步基礎(chǔ)。
教學(xué)目標(biāo)1、通過教學(xué),學(xué)生懂得應(yīng)用加法運算定律可以使一些分數(shù)計算簡便,會進行分數(shù)加法的簡便計算.2、培養(yǎng)學(xué)生仔細、認真的學(xué)習(xí)習(xí)慣.3、培養(yǎng)學(xué)生觀察、演繹推理的能力.教學(xué)重點整數(shù)加法運算定律在分數(shù)加法中的應(yīng)用,并使一些分數(shù)加法計算簡便.教學(xué)難點整數(shù)加法運算定律在分數(shù)加法中的應(yīng)用,并使一些分數(shù)加法計算簡便.教學(xué)過程設(shè)計一、復(fù)習(xí)準備(演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.教師:整數(shù)加法的運算定律有哪幾個?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應(yīng)用了什么運算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分數(shù)加法呢?這節(jié)課我們就一起來研究.二、學(xué)習(xí)新課(繼續(xù)演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?
一.說教材我今天說課的內(nèi)容是義務(wù)教育課程標(biāo)準北師大版七年級下冊第四單元第二節(jié)的《用關(guān)系式表示的變量間關(guān)系》。在上節(jié)課的學(xué)習(xí)中學(xué)生已通過分析表格中的數(shù)據(jù),感受到變量之間的相依關(guān)系,并用自己的語言加以描述,初步具有了有條理的思考和表達的能力,為本節(jié)的深入學(xué)習(xí)奠定了基礎(chǔ)。二.說教學(xué)目標(biāo)本節(jié)課根據(jù)新的教學(xué)理念和學(xué)生需要掌握的知識,確立本節(jié)課的三種教學(xué)目標(biāo):知識與能力目標(biāo):根據(jù)具體情況,能用適當(dāng)?shù)暮瘮?shù)表示方法刻畫簡單實際問題中變量之間的關(guān)系,能確定簡單實際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標(biāo):經(jīng)歷探索某些圖形中變量之間的關(guān)系的過程,進一步體會一個變量對另一個變量的影響,發(fā)展符號感。情感態(tài)度與價值觀目標(biāo):通過研究,學(xué)習(xí)培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關(guān)系的表達,培養(yǎng)數(shù)學(xué)建模能力,增強應(yīng)用意識。
五、教學(xué)反思:時鐘的秒針、分針、時針掃的圖形, 汽車擋風(fēng)玻璃的刮水器;刷工人刷過的面積近似看為扇形。圓中的計算問題---弧長和扇形的面積,雖然新課標(biāo)、新教材要求學(xué)習(xí),但本節(jié)教師結(jié)合學(xué)生的實際要求,將其作為內(nèi)容進行拓展與延伸,具有一定的實際意義。用生活中動態(tài)幾何解釋扇形,體驗解決問題策略的多樣性,發(fā)展實踐能力與創(chuàng)新精神。本節(jié)課,教師通過“扇子”的問題情景引入新課,它蘊含了大量的情感信息,有效激發(fā)學(xué)生的求知欲望,充分調(diào)動學(xué)生的學(xué)習(xí)積極性,注重學(xué)生的參與,讓出時間與空間由學(xué)生動手實踐,鼓勵學(xué)生自主探索、合作交流、展示成果,提高了學(xué)生發(fā)現(xiàn)問題、提出問題、解決問題的能力。用“扇子變化”,幫助學(xué)生探索自然界中事物的動靜結(jié)合問題,利用“扇子的文化”的新奇感激起學(xué)生的學(xué)習(xí)熱情,陶冶了學(xué)生的學(xué)習(xí)情操,從而使學(xué)生更深切地理解問題,使原本單調(diào)枯燥的數(shù)學(xué)變得生動、形象,激發(fā)學(xué)生的情感,使課堂充滿生機。
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
(2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書設(shè)計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學(xué)生進行合作交流.在解決有關(guān)平行四邊形的問題時,要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標(biāo)為(1,1.4),點B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
【教學(xué)目標(biāo)】(一)教學(xué)知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學(xué)生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們在教學(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
(3)設(shè)點A的坐標(biāo)為(m,0),則點B的坐標(biāo)為(12-m,0),點C的坐標(biāo)為(12-m,-16m2+2m),點D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).