提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

公司辦公室管理制度規(guī)章范文模板

  • 【高教版】中職數(shù)學基礎(chǔ)模塊上冊:4.2《指數(shù)函數(shù)》優(yōu)秀教案

    【高教版】中職數(shù)學基礎(chǔ)模塊上冊:4.2《指數(shù)函數(shù)》優(yōu)秀教案

    【教學目標】知識目標:⑴ 理解指數(shù)函數(shù)的圖像及性質(zhì);⑵ 了解指數(shù)模型,了解指數(shù)函數(shù)的應用.能力目標:⑴ 會畫出指數(shù)函數(shù)的簡圖;⑵ 會判斷指數(shù)函數(shù)的單調(diào)性;⑶了解指數(shù)函數(shù)在生活生產(chǎn)中的部分應用,從而培養(yǎng)學生分析與解決問題能力.【教學重點】⑴ 指數(shù)函數(shù)的概念、圖像和性質(zhì);⑵ 指數(shù)函數(shù)的應用實例.【教學難點】指數(shù)函數(shù)的應用實例.【教學設(shè)計】⑴ 以實例引入知識,提升學生的求知欲;⑵ “描點法”作圖與軟件的應用相結(jié)合,有助于觀察得到指數(shù)函數(shù)的性質(zhì);⑶知識的鞏固與練習,培養(yǎng)學生的思維能力;⑷實際問題的解決,培養(yǎng)學生分析與解決問題的能力;⑸以小組的形式進行討論、探究、交流,培養(yǎng)團隊精神.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 4.2指數(shù)函數(shù). *創(chuàng)設(shè)情景 興趣導入 問題 某種物質(zhì)的細胞分裂,由1個分裂成2個,2個分裂成4個,4個分裂成8個,……,知道分裂的次數(shù),如何求得細胞的個數(shù)呢? 解決 設(shè)細胞分裂次得到的細胞個數(shù)為,則列表如下: 分裂次數(shù)x123…x…細胞個數(shù)y2=4=8=…… 由此得到, . 歸納 函數(shù)中,指數(shù)x為自變量,底2為常數(shù). 介紹 播放 課件 質(zhì)疑 引導 分析 了解 觀看 課件 思考 領(lǐng)悟 導入 實例 比較 易于 學生 想象 歸納 領(lǐng)會 函數(shù) 的變 化意 義 5

  • 【高教版】中職數(shù)學基礎(chǔ)模塊上冊:5.6《三角函數(shù)的圖像和性質(zhì)》優(yōu)秀教案

    【高教版】中職數(shù)學基礎(chǔ)模塊上冊:5.6《三角函數(shù)的圖像和性質(zhì)》優(yōu)秀教案

    創(chuàng)設(shè)情景 興趣導入問題 觀察鐘表,如果當前的時間是2點,那么時針走過12個小時后,顯示的時間是多少呢?再經(jīng)過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當前時間2點重復出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個不為零的常數(shù),當取定義域內(nèi)的每一個值時,都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個函數(shù)的一個周期. 由于正弦函數(shù)的定義域是實數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.

  • 【高教版】中職數(shù)學基礎(chǔ)模塊上冊:5.7《已知三角函數(shù)值求角》優(yōu)秀教案

    【高教版】中職數(shù)學基礎(chǔ)模塊上冊:5.7《已知三角函數(shù)值求角》優(yōu)秀教案

    【教學目標】知識目標:(1)掌握利用計算器求角度的方法;(2)了解已知三角函數(shù)值,求指定范圍內(nèi)的角的方法.能力目標:(1)會利用計算器求角;(2)已知三角函數(shù)值會求指定范圍內(nèi)的角;(3)培養(yǎng)使用計算工具的技能.【教學重點】已知三角函數(shù)值,利用計算器求角;利用誘導公式求出指定范圍內(nèi)的角.【教學難點】已知三角函數(shù)值,利用計算器求指定范圍內(nèi)的角.【教學設(shè)計】(1)精講已知正弦值求角作為學習突破口;(2)將余弦、正切的情況作類比讓學生小組討論,獨立認知學習;(3)在練習——討論中深化、鞏固知識,培養(yǎng)能力;(4)在反思交流中,總結(jié)知識,品味學習方法.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 5.7已知三角函數(shù)值求角 *構(gòu)建問題探尋解決 問題 已知一個角,利用計算器可以求出它的三角函數(shù)值, 利用計算器,求= (精確到0.0001): 反過來,已知一個角的三角函數(shù)值,如何求出相應的角? 解決 準備計算器.觀察計算器上的按鍵并閱讀相關(guān)的使用說明書.小組內(nèi)總結(jié)學習已知三角函數(shù)值,利用計算器求出相應的角的方法. 利用計算器求出x:,則x= 歸納 計算器的標準設(shè)定中,已知正弦函數(shù)值,只能顯示出?90°~ 90°(或)之間的角. 介紹 質(zhì)疑 提問 引導 說明 了解 思考 動手 操作 探究 利用 問題 引起 學生 的好 奇心 并激 發(fā)其 獨立 尋求 計算 器操 作的 欲望 10

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學設(shè)計

    課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會應用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當?shù)姆柋硎军c、線、面之間的關(guān)系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內(nèi)容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設(shè)計

    課題序號 授課班級 授課課時2授課形式 教學方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學目的1、使學生認識柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運用這些特征描述生活中簡單物體的結(jié)構(gòu)。 2、讓學生了解柱、錐、球的側(cè)面積和體積的計算公式。 3、培養(yǎng)學生觀察能力、計算能力。

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:6.1《數(shù)列的概念》教案設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:6.1《數(shù)列的概念》教案設(shè)計

    【教學目標】1. 理解數(shù)列的通項公式的意義,能根據(jù)通項公式寫出數(shù)列的任意一項,以及根據(jù)其前幾項寫出它的一個通項公式.2. 了解數(shù)列的遞推公式,會根據(jù)數(shù)列的遞推公式寫出前幾項.3.培養(yǎng)學生積極參與、大膽探索的精神,培養(yǎng)學生的觀察、分析、歸納的能力.教學重點 數(shù)列的通項公式及其應用.教學難點 根據(jù)數(shù)列的前幾項寫出滿足條件的數(shù)列的一個通項公式.教學方法 本節(jié)課主要采用例題解決法.通過列舉實例,進一步研究數(shù)列的項與序號之間的關(guān)系.通過三類題目,使學生深刻理解數(shù)列通項公式的意義,為以后學習等差數(shù)列與等比數(shù)列打下基礎(chǔ).【教學過程】 環(huán)節(jié)教學內(nèi)容師生互動設(shè)計意圖導 入⒈數(shù)列的定義 按一定次序排列的一列數(shù)叫做數(shù)列. 注意:(1)數(shù)列中的數(shù)是按一定次序排列的; (2)同一個數(shù)在數(shù)列中可以重復出現(xiàn). 2. 數(shù)列的一般形式 數(shù)列a1,a2,a3,…,an,…,可記作{ an }. 3. 數(shù)列的通項公式: 如果數(shù)列{ an }的第n項an與n之間的關(guān)系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的通項公式. 教師引導學生復習. 為學生進一步理解通項公式,應用通項公式解決實際問題做好準備.

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:6.2《等差數(shù)列》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:6.2《等差數(shù)列》教學設(shè)計

    系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設(shè)備黑板、粉筆復習提問提問內(nèi)容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設(shè)計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調(diào)學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而達到使學生既獲得知識又發(fā)展智能的目的.

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:6.3《等比數(shù)列》優(yōu)秀教案設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:6.3《等比數(shù)列》優(yōu)秀教案設(shè)計

    授課 日期 班級16高造價 課題: §6.3等比數(shù)列 教學目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項公式; 3.掌握等比數(shù)列前 n 項和公式及推導過程,能用公式求相關(guān)參數(shù); 教學重點、難點:運用等比數(shù)列的通項公式求相關(guān)參數(shù) 授課方法: 任務驅(qū)動法 小組合作學習法 教學參考及教具(含多媒體教學設(shè)備): 《單招教學大綱》 授課執(zhí)行情況及分析: 板書設(shè)計或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學生板書區(qū)) 2. 等比數(shù)列的通項公式 3.等比數(shù)列的求和公式

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》教案設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》教案設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導入 【問題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點的坐標呢? 圖8-12 介紹 質(zhì)疑 引導 分析 了解 思考 啟發(fā) 學生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點,既在上,又在上.所以的坐標是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點的坐標. 觀察圖8-13,直線、相交于點P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領(lǐng) 分析 仔細 分析 講解 關(guān)鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學生 分析 帶領(lǐng) 學生 分析 引導 式啟 發(fā)學 生得 出結(jié) 果

  • 【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關(guān)鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關(guān)鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進一 步領(lǐng) 會 注意 觀察 學生 是否 理解 知識 點 15

  • 【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導入 基礎(chǔ)模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上海→重慶. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設(shè)計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:10.2《概率》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:10.2《概率》教學設(shè)計

    課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎(chǔ)上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設(shè) 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導入 【實驗】 商店進了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質(zhì)量是研究對象的總體,每個蘋果的質(zhì)量是研究的個體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學生上學期數(shù)學期末考試成績,指出其中的總體與個體. 解 該班所有學生的數(shù)學期末考試成績是總體,每一個學生的數(shù)學期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個體. 說明 強調(diào) 引領(lǐng) 觀察 思考 主動 求解 通過例題進一步領(lǐng)會 35

  • 高教版中職數(shù)學基礎(chǔ)模塊下冊:10.4《用樣本估計總體》教學設(shè)計

    高教版中職數(shù)學基礎(chǔ)模塊下冊:10.4《用樣本估計總體》教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設(shè)情境 興趣導入 【知識回顧】 初中我們曾經(jīng)學習過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個組內(nèi)的個數(shù). 【知識鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點數(shù)值時需要考慮分點值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 各組內(nèi)數(shù)據(jù)的個數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個數(shù)之比叫做該組的頻率. 計算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對應矩形的面積. 【想一想】 各小矩形的面積之和應該等于1.為什么呢? 【新知識】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測,去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當,這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領(lǐng) 分析 仔細 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學生 分析 25

  • 人教版高中歷史必修2從“戰(zhàn)時共產(chǎn)主義”到“斯大林模式”說課稿2篇

    人教版高中歷史必修2從“戰(zhàn)時共產(chǎn)主義”到“斯大林模式”說課稿2篇

    【課堂小結(jié)】本課主要講述俄國十月革命后進行經(jīng)濟建設(shè),并在建設(shè)中進行社會主義探索,期間先后出現(xiàn)了戰(zhàn)時共產(chǎn)主義政策、新經(jīng)濟政策和斯大林模式,這些政策和體制的產(chǎn)生都是歷史和當時現(xiàn)實有關(guān),但也反映出在建設(shè)社會主義中既有成功的也由重大失誤,主要在于缺乏現(xiàn)成的政策和模式可供借鑒,更在于理論上的缺乏。斯大林模式的形成同蘇聯(lián)當時社會生產(chǎn)力的發(fā)展水平相適應,它在初期和戰(zhàn)爭時期曾發(fā)揮了巨大作用,使蘇聯(lián)成為強大的社會主義國家。它建立的高度集中的計劃經(jīng)濟體制和新型的工業(yè)化模式是蘇聯(lián)進行社會主義建設(shè)中的探索和創(chuàng)新,對二戰(zhàn)后社會主義國家產(chǎn)生了深刻影響,促進這些國家國民經(jīng)濟的恢復和發(fā)展,形成了足以同資本主義相抗衡的社會主義陣營。但是,它沒有解決社會主義民主政治建設(shè)和經(jīng)濟運行的一系列根本問題,違背了列寧關(guān)于把文化經(jīng)濟建設(shè)當作工作重心的指示,仍把政治斗爭放在第一位。

  • 人教版高中歷史必修2從“戰(zhàn)時共產(chǎn)主義”到“斯大林模式”教案

    人教版高中歷史必修2從“戰(zhàn)時共產(chǎn)主義”到“斯大林模式”教案

    5、弊端:(1)經(jīng)濟發(fā)展不均衡,片面發(fā)展重工業(yè),使輕工業(yè)和農(nóng)業(yè)長期處于落后狀態(tài);(2)對農(nóng)民的剝奪太重,挫傷了農(nóng)民的生產(chǎn)積極性;(3)長期執(zhí)行指令性計劃嚴重削弱了企業(yè)的生產(chǎn)自主權(quán),不利于發(fā)揮企業(yè)的生產(chǎn)積極性,制約了蘇聯(lián)經(jīng)濟的可持續(xù)發(fā)展。(4)計劃經(jīng)濟體制確立后,沒有隨著社會的變化進行調(diào)整,二戰(zhàn)后逐漸僵化,喪失了自我完善的功能,成為蘇聯(lián)解體的重要因素?!竞献魈骄俊克勾罅帜J降脑u價及經(jīng)驗教訓:積極:①使蘇聯(lián)迅速實現(xiàn)了 工業(yè)化②蘇聯(lián)經(jīng)濟實力的迅速增長,為反法西斯戰(zhàn)爭的勝利奠定了 物質(zhì)基礎(chǔ) 。消極:①政治:高度集權(quán),破壞了 民主與法制 ; ②經(jīng)濟:優(yōu)先發(fā)展重工業(yè)使 農(nóng)業(yè)和輕工業(yè)長期處于落后狀態(tài),農(nóng)民生產(chǎn)積極性不高;計劃指令,壓制了地方和企業(yè)的積極性,阻礙蘇聯(lián)經(jīng)濟的發(fā)展高度集中的計劃經(jīng)濟體制,成為東歐劇變和蘇聯(lián)解體的重要原因。

  • 人教版高中生物必修1生物膜的流動鑲嵌模型說課稿

    人教版高中生物必修1生物膜的流動鑲嵌模型說課稿

    二、流動鑲嵌模型的基本內(nèi)容1、膜的成分2、膜的基本支架3、膜的結(jié)構(gòu)特點4、膜的功能特性設(shè)計意圖:我根據(jù)板書的“規(guī)范、工整和美觀”的要求,結(jié)合所教的內(nèi)容,設(shè)計了如圖所示的板書,使學生對本節(jié)課有一個整體的思路。八、教學反思:本節(jié)課我創(chuàng)設(shè)了問題情境來引導學生主動學習,利用了多媒體信息技術(shù)激發(fā)學生的學習熱情,調(diào)動了學生的積極性,成功實現(xiàn)預期的教學目標。體現(xiàn)了學生為主體地位的新課程理念。啟發(fā)式、探究式的教學方法以及由教師指導下的學生自主閱讀、合作交流的學習方法把學生從死記知識的苦海中解救出來。初次的嘗試還存在一定的缺陷,學生不能夠很好的把知識和習題聯(lián)系,只是把他所知道的知識簡單羅列,不能夠體現(xiàn)出能力的訓練。在上課中發(fā)現(xiàn)學生比較靦腆或拘束,聲音比較小,表達不能到位。盡管本節(jié)課存在諸多不足之處,但是也讓我看到了閃光點:學生比較歡迎這樣一堂自己是主角的課堂。

  • 人教A版高中數(shù)學必修一函數(shù)模型的應用教學設(shè)計(2)

    人教A版高中數(shù)學必修一函數(shù)模型的應用教學設(shè)計(2)

    本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉(zhuǎn)化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.

  • 人教A版高中數(shù)學必修一函數(shù)模型的應用教學設(shè)計(1)

    人教A版高中數(shù)學必修一函數(shù)模型的應用教學設(shè)計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內(nèi)容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;

上一頁123...96979899100101102103104105106107下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!