教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結(jié)合思想.教學(xué)重點(diǎn):特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點(diǎn):靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
教學(xué)目標(biāo)(一)教學(xué)知識點(diǎn)1.經(jīng)歷探索船是否有觸礁危險的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進(jìn)行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進(jìn)行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實(shí)際問題題意的過程中,畫出示意圖,培養(yǎng)獨(dú)立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點(diǎn)1.經(jīng)歷探索船是否有觸礁危險的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點(diǎn)根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進(jìn)貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進(jìn)時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
解:(1)設(shè)第一次落地時,拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時,運(yùn)用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱,根據(jù)點(diǎn)C在對稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱.∵點(diǎn)C在對稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點(diǎn)與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點(diǎn)A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點(diǎn)A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時,常常使用計算器幫助我們處理比較復(fù)雜的計算。
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過配方法求出二次函數(shù)的最值。☆ 達(dá)標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時,測得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
一.教學(xué)內(nèi)容。我今天說課的內(nèi)容是新人教版教材小學(xué)數(shù)學(xué)六年級上冊第一單《分?jǐn)?shù)乘法》例5《小數(shù)乘分?jǐn)?shù)》。這部分是教材新增加的內(nèi)容,用一課時進(jìn)行教學(xué)。二.說教材。1.教材分析本部分的教學(xué)是在學(xué)生掌握了整數(shù)乘法、小數(shù)乘法、分?jǐn)?shù)乘法、以及整數(shù)和小數(shù)混合運(yùn)算、簡便計算的基礎(chǔ)之上進(jìn)行的教學(xué)。教學(xué)中不僅涉及到分?jǐn)?shù)與小數(shù)的互化,假分?jǐn)?shù)與帶分?jǐn)?shù)的互化,整數(shù)與分?jǐn)?shù)的互化,而且對如何判斷一個分?jǐn)?shù)是否能化成有限小數(shù)等知識都會涉及。通過教學(xué)本例題要使學(xué)生經(jīng)歷探究計算方法的過程,運(yùn)用多樣化的解題思路開拓學(xué)生的計算思維,提高學(xué)生的計算能力。為教學(xué)例6、例7的分?jǐn)?shù)混合計算和簡便計算奠定基礎(chǔ)。
一、教材分析義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(人教版)一年級上冊中實(shí)踐活動——“數(shù)學(xué)樂園”是根據(jù)學(xué)生的年齡特點(diǎn),聯(lián)系學(xué)生的生活實(shí)際設(shè)計的一種數(shù)學(xué)實(shí)踐活動情境,其內(nèi)容都是一些具有現(xiàn)實(shí)性和趣味性的活動材料和“起立游戲”、“送信游戲”等。學(xué)生在活動中可以進(jìn)一步經(jīng)歷數(shù)學(xué)知識的應(yīng)用過程,感受自己身邊的數(shù)學(xué)知識,體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣?;谝陨戏治?,確定了以下教學(xué)目標(biāo): 1.進(jìn)一步掌握20以內(nèi)數(shù)的順序、組成及計算,區(qū)分它們的基數(shù)、序數(shù)含義。 2.了解同一問題可以有不同的解決方法,培養(yǎng)有條理地進(jìn)行思考的能力。 3.經(jīng)歷數(shù)學(xué)知識的應(yīng)用過程,感受自己身邊的數(shù)學(xué)知識,體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。 二、學(xué)生分析 學(xué)生認(rèn)識了0~20并掌握了20以內(nèi)的加減法后,已具備了解決一些簡單實(shí)際問題的能力。但由于日常教學(xué)中,班上的人數(shù)較多,活動空間有限,組織起來也較困難。如何創(chuàng)造性地使用教材,以便全班同學(xué)都能在有限的時間和空間內(nèi),主動、有序、愉快地參與到各個活動中來,是本節(jié)課急需解決的一個問題。
一、說課標(biāo)《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,從學(xué)生的生活經(jīng)驗(yàn)和已有知識出發(fā),創(chuàng)設(shè)生動有趣的情境,引導(dǎo)學(xué)生開展觀察、操作??交流等活動,使學(xué)生通過數(shù)學(xué)活動,掌握基本的數(shù)學(xué)知識和技能。所以我把“加強(qiáng)生活體驗(yàn),注重學(xué)生發(fā)展”確定為本節(jié)課的教學(xué)理念。二、說教材:1、教學(xué)內(nèi)容在知識體系中的地位 時間的計算這一內(nèi)容是在學(xué)生認(rèn)識了時、分、秒的基礎(chǔ)上教學(xué)的。學(xué)生學(xué)習(xí)一些有關(guān)時間的簡單計算,可以加深對時間單位實(shí)際大小的認(rèn)識,培養(yǎng)時間觀念。2、本課時的教學(xué)目標(biāo) 通過教學(xué)使學(xué)生能掌握時間換算的方法,正確地進(jìn)行時間單位之間的換算;通過教學(xué)使學(xué)生學(xué)會計算兩個時刻之間經(jīng)過的時間;養(yǎng)成遵守時間,愛惜時間的意識和習(xí)慣。3、本課教學(xué)的重點(diǎn):計算間隔不超過1小時的兩個時刻之間經(jīng)過的時間。 難點(diǎn):開始和結(jié)束的時刻及經(jīng)過的時間三者之間的關(guān)系。知識生長點(diǎn):讓學(xué)生在認(rèn)識了時、分、秒及時間單位的進(jìn)率的基礎(chǔ)上進(jìn)一步學(xué)習(xí)時間單位的簡單換算,和經(jīng)過時間的計算。
尊敬的各位評委,各位老師:大家好!我說課的內(nèi)容是人教版小學(xué)數(shù)學(xué)三年級上冊第三單元第2節(jié)《千米的認(rèn)識》。它是在學(xué)生學(xué)習(xí)了米、分米、厘米、毫米等長度單位的基礎(chǔ)上進(jìn)行教學(xué)的?!扒住辈幌窭迕?、分米那樣看得見、畫得出,所以學(xué)生對“千米”的感知相對較少,這就為學(xué)生認(rèn)識“千米”帶來了困難。緊密聯(lián)系學(xué)生的生活,靈活運(yùn)用教材,是解決這一困難的有效途徑。根據(jù)上述內(nèi)容的分析,我確定了如下教學(xué)目標(biāo):1、使學(xué)生初步認(rèn)識長度單位“千米”,建立1千米長度觀念,知道1千米=1000米。2、體驗(yàn)1千米的實(shí)際長度,培養(yǎng)學(xué)生的觀察能力、實(shí)踐能力,發(fā)展學(xué)生的空間想象能力。3、感受數(shù)學(xué)與日常生活的緊密聯(lián)系,在與同伴交流中體驗(yàn)學(xué)習(xí)數(shù)學(xué)的愉悅心情。其中,使學(xué)生建立1千米的長度觀念,體驗(yàn)1千米的實(shí)際長度是本課教學(xué)的重難點(diǎn)。
大家好,我今天的說課內(nèi)容是《6和7 的認(rèn)識》,下面,我將從教學(xué)背景、教學(xué)目標(biāo)、教法學(xué)法、教學(xué)用具、教學(xué)過程、教學(xué)特色等六個方面來談。一、教學(xué)背景(一)教材分析本節(jié)課是新人教版一年級上冊第五單元“6~10的認(rèn)識和加減法”的“6和7”部分的第一課時“6和7的認(rèn)識”,即教材第39到40頁的內(nèi)容。從教材內(nèi)容來看,這兩頁可以分為五個部分:情境導(dǎo)入、6和7的表示、5、6、7的大小關(guān)系、7與第7的區(qū)別(也可以說是基數(shù)與序數(shù)的區(qū)別)、6和7的書寫。與本節(jié)課相關(guān)的內(nèi)容還有第43頁練習(xí)九中的1~3小題。在學(xué)習(xí)本節(jié)課內(nèi)容之前,我們已經(jīng)學(xué)習(xí)了0~5的認(rèn)識,“>”“<”“=”等符號的表示,第1到第5的認(rèn)識。在學(xué)習(xí)本節(jié)課內(nèi)容之后,我們還要學(xué)習(xí)8和9的認(rèn)識、10的認(rèn)識、11~20各數(shù)的認(rèn)識。