用米作單位,用分?jǐn)?shù)怎么表示呢?(1/10米)師:1/10米也可以寫(xiě)成0.1米。師:請(qǐng)同學(xué)們看米尺,從0到30,從0到70,應(yīng)該是幾分米,十分之幾米?用小數(shù)怎樣表示呢?可先和同桌商量商量。學(xué)生同桌討論后反饋師根據(jù)反饋結(jié)果提問(wèn):請(qǐng)同學(xué)觀察一下1/10米和0.1米,3/10米和0.3米,7/10米和0.7米之間有什么關(guān)系?隨學(xué)生的回答出示1/10米=0.1米 3/10米=0.3米 7/10米=0.7米。再讓學(xué)生觀察上面的等式,四人小組討論你發(fā)現(xiàn)了什么?使學(xué)生通過(guò)討論明確:分母是10的分?jǐn)?shù)可以寫(xiě)成一位小數(shù),一位小數(shù)表示十分之幾。2、 認(rèn)識(shí)兩位小數(shù) 、三位小數(shù)師:我們已經(jīng)知道了一位小數(shù)表示十分之幾,那么請(qǐng)同學(xué)猜一猜兩位小數(shù)與什么樣的分?jǐn)?shù)有關(guān)?三位小數(shù)與什么樣的分?jǐn)?shù)有關(guān)?(具體的步驟和前面相似)讓學(xué)生根據(jù)一位小數(shù)表示十分之幾,猜想出兩位小數(shù)和什么樣的分?jǐn)?shù)有關(guān)?有意識(shí)地促進(jìn)“遷移”,使學(xué)生在學(xué)會(huì)的同時(shí)學(xué)習(xí)能力也得到提高。關(guān)于計(jì)數(shù)單位的教學(xué)我個(gè)人認(rèn)為還是放到52頁(yè)小數(shù)數(shù)位順序表這里教學(xué)比較妥當(dāng)。
1.說(shuō)教材《比例的意義和基本性質(zhì)》是人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第四單元的內(nèi)容,這部分內(nèi)容是在學(xué)習(xí)了比的有關(guān)知識(shí)并掌握了一些常見(jiàn)的數(shù)量關(guān)系的基礎(chǔ)上進(jìn)行教學(xué)的,是前面“比的知識(shí)”的深化,也是后面學(xué)習(xí)解比例知識(shí)的基礎(chǔ),并為學(xué)習(xí)比例的應(yīng)用,特別是為正、反比例及其應(yīng)用打好基礎(chǔ)。比例的知識(shí)在生活和生產(chǎn)中有著廣泛的應(yīng)用,所以本節(jié)課的知識(shí)就顯得尤為重要。2.教學(xué)目標(biāo)我以《新課程標(biāo)準(zhǔn)》為依據(jù),結(jié)合小學(xué)數(shù)學(xué)教材編排的意圖和學(xué)生的實(shí)際情況,擬定以下教學(xué)目標(biāo):(1)知識(shí)與技能目標(biāo):使學(xué)生理解并掌握比例的意義和基本性質(zhì),認(rèn)識(shí)比例各部分名稱(chēng),知道比和比例的區(qū)別。(2)能力目標(biāo):培養(yǎng)學(xué)生自主參與的意識(shí)和主動(dòng)探究的精神,培養(yǎng)學(xué)生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學(xué)生的思維。 (3)情感與態(tài)度目標(biāo):在教學(xué)中滲透愛(ài)國(guó)主義教育,培養(yǎng)學(xué)生善于觀察、勤于思考、樂(lè)于探究的學(xué)習(xí)習(xí)慣。3.教學(xué)重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):理解比例的意義與探究基本性質(zhì)。教學(xué)難點(diǎn):運(yùn)用比例的意義或性質(zhì)判斷兩個(gè)比能否組成比例,并能正確地組成比例。
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類(lèi)型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書(shū)設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.
課程名稱(chēng)數(shù)學(xué)授課教師趙娜授課章節(jié)第四章第四節(jié)對(duì)數(shù)授課時(shí)間2015—2016年第一學(xué)期 第2周第1次課授課班級(jí)15級(jí)一班,15級(jí)二班,15級(jí)三班,15級(jí)四班,15級(jí)五班,15級(jí)六班,15級(jí)七班教學(xué)目的⑴ 理解對(duì)數(shù)的概念,理解常用對(duì)數(shù)和自然對(duì)數(shù)的概念; ⑵ 掌握利用計(jì)算器求對(duì)數(shù)值的方法; ⑶了解積、商、冪的對(duì)數(shù).教學(xué)重點(diǎn) 和難點(diǎn)【教學(xué)重點(diǎn)】 指數(shù)式與對(duì)數(shù)式的關(guān)系. 【教學(xué)難點(diǎn)】 對(duì)數(shù)的概念.復(fù)習(xí)提問(wèn)(1) 指數(shù)函數(shù)圖像的性質(zhì)本課小結(jié)⑴ 理解對(duì)數(shù)的概念,理解常用對(duì)數(shù)和自然對(duì)數(shù)的概念; ⑵ 掌握利用計(jì)算器求對(duì)數(shù)值的方法; ⑶了解積、商、冪的對(duì)數(shù).布置作業(yè)練習(xí)冊(cè)p7頁(yè)1-4題檢查簽字 檢查日期
3)乘除運(yùn)算①有理數(shù)的乘法法則:(老師給出,學(xué)生一起朗讀)1. 兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;2. 任何數(shù)與零相乘都得零;3. 幾個(gè)不等于零的數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)數(shù),積為負(fù);當(dāng)負(fù)因數(shù)的個(gè)數(shù)為偶數(shù)個(gè)時(shí),積為正;4. 幾個(gè)有理數(shù)相乘,若其中有一個(gè)為零,積就為零。②有理數(shù)的除法法則:(老師提問(wèn),學(xué)生回答)1. 兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除;2. 除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。③關(guān)系(老師給出)除法轉(zhuǎn)化為乘法進(jìn)行運(yùn)算。
一.學(xué)生情況分析對(duì)于三角形的內(nèi)角和定理,學(xué)生在小學(xué)階段已通過(guò)量、折、拼的方法進(jìn)行了合情推理并得出了相關(guān)的推論。在小學(xué)認(rèn)識(shí)三角形,通過(guò)觀察、操作,得到了三角形內(nèi)角和是180°。但在學(xué)生升入初中階段學(xué)習(xí)過(guò)推理證明后,必須明確推理要有依據(jù),定理必須通過(guò)邏輯證明?,F(xiàn)在的學(xué)生喜歡動(dòng)手實(shí)驗(yàn),操作能力較強(qiáng),但對(duì)知識(shí)的歸納、概括能力以及知識(shí)的遷移能力不強(qiáng)。部分優(yōu)秀學(xué)生已具備良好的學(xué)習(xí)習(xí)慣,有一定分析、歸納能力。
一、關(guān)于教學(xué)目標(biāo)的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡(jiǎn)單實(shí)際問(wèn)題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點(diǎn)一元一次不等式的解法作準(zhǔn)備。不等式的基本性質(zhì)3更是本章的難點(diǎn)??墒钦f(shuō)不等式的基本性質(zhì)這個(gè)概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點(diǎn)。因此我選擇此節(jié)課說(shuō)課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)和生活實(shí)際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會(huì)“從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型,并回到實(shí)際問(wèn)題中解釋和檢驗(yàn)”的過(guò)程。注重“概念的實(shí)際背景與形成過(guò)程”的教學(xué)。使學(xué)生在熟悉的實(shí)際問(wèn)題中,在已有的學(xué)習(xí)經(jīng)驗(yàn)的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗(yàn)證”的探索過(guò)程,體會(huì)“轉(zhuǎn)化”的思想方法,體會(huì)數(shù)學(xué)的價(jià)值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運(yùn)用數(shù)學(xué)中歸納、類(lèi)比的方法,理解方程與不等式的異同點(diǎn)。
1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線長(zhǎng)為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長(zhǎng)6,則它的面積為_(kāi)________ ,周長(zhǎng)為_(kāi)_______. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書(shū)寫(xiě)2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫(huà)正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過(guò)點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書(shū)設(shè)計(jì)一次函數(shù)的應(yīng)用單個(gè)一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過(guò)程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個(gè)體差異,使每個(gè)學(xué)生都學(xué)有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過(guò)點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類(lèi)題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書(shū)設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問(wèn)題幾何問(wèn)題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過(guò)函數(shù)圖象獲取信息,解決簡(jiǎn)單的實(shí)際問(wèn)題,在函數(shù)圖象信息獲取過(guò)程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題的能力和數(shù)學(xué)應(yīng)用意識(shí).
方法總結(jié):對(duì)等式進(jìn)行變形,必須在等式的兩邊同時(shí)進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類(lèi)項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時(shí),一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過(guò)觀察、操作、歸納等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.
一、教學(xué)目標(biāo)(一)知識(shí)教育點(diǎn)使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程.(二)能力訓(xùn)練點(diǎn)要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對(duì)比、概括、轉(zhuǎn)化等方面的能力.(三)學(xué)科滲透點(diǎn)通過(guò)一個(gè)簡(jiǎn)單實(shí)驗(yàn)引入拋物線的定義,可以對(duì)學(xué)生進(jìn)行理論來(lái)源于實(shí)踐的辯證唯物主義思想教育.二、教材分析1.重點(diǎn):拋物線的定義和標(biāo)準(zhǔn)方程.2.難點(diǎn):拋物線的標(biāo)準(zhǔn)方程的推導(dǎo).三、活動(dòng)設(shè)計(jì)提問(wèn)、回顧、實(shí)驗(yàn)、講解、板演、歸納表格.四、教學(xué)過(guò)程(一)導(dǎo)出課題我們已學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學(xué)習(xí)第四種圓錐曲線——拋物線,以及它的定義和標(biāo)準(zhǔn)方程.課題是“拋物線及其標(biāo)準(zhǔn)方程”.首先,利用籃球和排球的運(yùn)動(dòng)軌跡給出拋物線的實(shí)際意義,再利用太陽(yáng)灶和拋物線型的橋說(shuō)明拋物線的實(shí)際用途。
教學(xué)目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學(xué)重點(diǎn):正態(tài)分布的密度函數(shù)和分布函數(shù)。教學(xué)難點(diǎn):正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學(xué)學(xué)時(shí):2學(xué)時(shí)教學(xué)過(guò)程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計(jì)算積分。首先計(jì)算。因?yàn)?利用極坐標(biāo)計(jì)算)所以。記,則利用定積分的換元法有因?yàn)椋运梢宰鳛槟硞€(gè)連續(xù)隨機(jī)變量的概率密度函數(shù)。定義 如果連續(xù)隨機(jī)變量的概率密度為則稱(chēng)隨機(jī)變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱(chēng)為高斯(Gauss)分布。
教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 知識(shí)與技能掌握雙曲線的定義,掌握雙曲線的四種標(biāo)準(zhǔn)方程形式及其對(duì)應(yīng)的焦點(diǎn)、準(zhǔn)線.過(guò)程與方法掌握對(duì)雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),進(jìn)一步理解求曲線方程的方法——坐標(biāo)法.通過(guò)本節(jié)課的學(xué)習(xí),提高學(xué)生觀察、類(lèi)比、分析和概括的能力.情感、態(tài)度與價(jià)值觀通過(guò)本節(jié)的學(xué)習(xí),體驗(yàn)研究解析幾何的基本思想,感受圓錐曲線在刻畫(huà)現(xiàn)實(shí)和解決實(shí)際問(wèn)題中的作用,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.2. 教學(xué)重點(diǎn)/難點(diǎn) 教學(xué)重點(diǎn)雙曲線的定義及焦點(diǎn)及雙曲線標(biāo)準(zhǔn)方程.教學(xué)難點(diǎn)在推導(dǎo)雙曲線標(biāo)準(zhǔn)方程的過(guò)程中,如何選擇適當(dāng)?shù)淖鴺?biāo)系. 3. 教學(xué)用具 多媒體4. 標(biāo)簽
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 8.4 圓(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)直線與圓的位置關(guān)系有三種(如圖8-21): (1)相離:無(wú)交點(diǎn); (2)相切:僅有一個(gè)交點(diǎn); (3)相交:有兩個(gè)交點(diǎn). 并且知道,直線與圓的位置關(guān)系,可以由圓心到直線的距離d與半徑r的關(guān)系來(lái)判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說(shuō)明 質(zhì)疑 引導(dǎo) 分析 了解 思考 思考 帶領(lǐng) 學(xué)生 分析 啟發(fā) 學(xué)生思考 0 15*動(dòng)腦思考 探索新知 【新知識(shí)】 設(shè)圓的標(biāo)準(zhǔn)方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關(guān)系. 講解 說(shuō)明 引領(lǐng) 分析 思考 理解 帶領(lǐng) 學(xué)生 分析 30*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例6 判斷下列各直線與圓的位置關(guān)系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標(biāo)準(zhǔn)方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關(guān)系的其他方法? *例7 過(guò)點(diǎn)作圓的切線,試求切線方程. 分析 求切線方程的關(guān)鍵是求出切線的斜率.可以利用原點(diǎn)到切線的距離等于半徑的條件來(lái)確定. 解 設(shè)所求切線的斜率為,則切線方程為 , 即 . 圓的標(biāo)準(zhǔn)方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說(shuō)明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問(wèn)題中有著廣泛的應(yīng)用. 【想一想】 能否利用“切線垂直于過(guò)切點(diǎn)的半徑”的幾何性質(zhì)求出切線方程? 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 講解 說(shuō)明 觀察 思考 主動(dòng) 求解 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 50
本人所教的兩個(gè)班級(jí)學(xué)生普遍存在著數(shù)學(xué)科基礎(chǔ)知識(shí)較為薄弱,計(jì)算能力較差,綜合能力不強(qiáng),對(duì)數(shù)學(xué)學(xué)習(xí)有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識(shí)到自己的不足,對(duì)數(shù)學(xué)課的學(xué)習(xí)興趣高,積極性強(qiáng)。 學(xué)生在學(xué)習(xí)交往上表現(xiàn)為個(gè)別化學(xué)習(xí),課堂上較為依賴?yán)蠋煹囊龑?dǎo)。學(xué)生的群體性小組交流能力與協(xié)同討論學(xué)習(xí)的能力不強(qiáng),對(duì)學(xué)習(xí)資源和知識(shí)信息的獲取、加工、處理和綜合的能力較低。在教學(xué)中盡量分析細(xì)致,減少跨度較大的環(huán)節(jié),對(duì)重要的推導(dǎo)過(guò)程采用板書(shū)方式逐步進(jìn)行,力求讓絕大多數(shù)學(xué)生接受。 1.理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo);掌握橢圓的標(biāo)準(zhǔn)方程;會(huì)根據(jù)條件求橢圓的標(biāo)準(zhǔn)方程,會(huì)根據(jù)橢圓的標(biāo)準(zhǔn)方程求焦點(diǎn)坐標(biāo). 2.通過(guò)橢圓圖形的研究和標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫(huà)出橢圓的圖形,并了解橢圓的一些實(shí)際應(yīng)用。 1.讓學(xué)生經(jīng)歷橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,進(jìn)一步掌握求曲線方程的一般方法,體會(huì)數(shù)形結(jié)合等數(shù)學(xué)思想;培養(yǎng)學(xué)生運(yùn)用類(lèi)比、聯(lián)想等方法提出問(wèn)題. 2.培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,進(jìn)一步掌握利用方程研究曲線的基本方法,通過(guò)與橢圓幾何性質(zhì)的對(duì)比來(lái)提高學(xué)生聯(lián)想、類(lèi)比、歸納的能力,解決一些實(shí)際問(wèn)題。 1.通過(guò)具體的情境感知研究橢圓標(biāo)準(zhǔn)方程的必要性和實(shí)際意義;體會(huì)數(shù)學(xué)的對(duì)稱(chēng)美、簡(jiǎn)潔美,培養(yǎng)學(xué)生的審美情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度. 2.進(jìn)一步理解并掌握代數(shù)知識(shí)在解析幾何運(yùn)算中的作用,提高解方程組和計(jì)算能力,通過(guò)“數(shù)”研究“形”,說(shuō)明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過(guò)“數(shù)”的變化研究“形”的本質(zhì)。幫助學(xué)生建立勇于探索創(chuàng)新的精神和克服困難的信心。
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫(huà)法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫(huà)位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫(huà)位似圖形的關(guān)鍵是畫(huà)出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫(huà)圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫(huà)圖時(shí)位似中心的取法有多種,對(duì)畫(huà)圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫(huà)圖最簡(jiǎn)便.三、板書(shū)設(shè)計(jì)
問(wèn)題6:觀察剛才所畫(huà)的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計(jì):(1) 引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;(2) 充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過(guò)程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過(guò)觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;(3) 組織小組討論來(lái)歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
教法分析:在新課程的教學(xué)中教師要向?qū)W生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),倡導(dǎo)讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程,鼓勵(lì)學(xué)生自主探索與合作交流,讓學(xué)生在實(shí)踐中體驗(yàn)、學(xué)習(xí)。因此,本節(jié)課我采用了多媒體輔助教學(xué)與學(xué)生動(dòng)手操作、觀察、討論的方式,一方面能夠直觀、生動(dòng)地反映各種圖形的特征,增加課堂的容量,吸引學(xué)生注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;另一方面也有利于突出重點(diǎn)、突破難點(diǎn),更好地提高課堂效率。學(xué)法分析:初二年級(jí)學(xué)習(xí)對(duì)新事物比較敏感,通過(guò)新課程教學(xué)的實(shí)施,學(xué)生已具有一定探索學(xué)習(xí)與合作交流的習(xí)慣。但是一下子要學(xué)生從直觀的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導(dǎo)學(xué)生:一要善于觀察發(fā)現(xiàn);二要勇于探索、動(dòng)手實(shí)驗(yàn);三要把自己的所思所想大膽地進(jìn)行交流,從而得出正確的結(jié)論,并掌握知識(shí)。
(1)用簡(jiǎn)潔明快的語(yǔ)言概括大意,不能超過(guò)200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測(cè)學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說(shuō)明:練習(xí)注意了問(wèn)題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答問(wèn)題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹(shù)立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問(wèn)題時(shí),可以直接從函數(shù)圖象上獲取信息解決問(wèn)題,當(dāng)然也可以設(shè)法得出各自對(duì)應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過(guò)計(jì)算解決問(wèn)題。通過(guò)列出關(guān)系式解決問(wèn)題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.