(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
《較復(fù)雜的小數(shù)乘法》是第九冊(cè)第一單元《小數(shù)的乘法和除法》的第三節(jié)。本 節(jié)課的教學(xué)內(nèi)容是教科書第3頁(yè)的例3、例4。這一教材是在學(xué)生學(xué)習(xí)了小數(shù)乘法的意義(小數(shù)乘以整數(shù)、一個(gè)數(shù)乘以小數(shù))、小數(shù)乘法的計(jì)算法則以及小數(shù)點(diǎn)位置 移動(dòng)引起小數(shù)大小的變化的基礎(chǔ)上進(jìn)行教學(xué)的,它是小數(shù)乘法計(jì)算法則的引伸和補(bǔ)充,同時(shí)也是學(xué)生今后進(jìn)一步學(xué)習(xí)小數(shù)四則混合運(yùn)算的基礎(chǔ)。本節(jié)課 的教學(xué)目的是:1、使學(xué)生進(jìn)一步掌握小數(shù)乘法的計(jì)算法則,懂得在點(diǎn)積的小數(shù)點(diǎn)時(shí),乘得的積的小數(shù)位數(shù)不夠的,要在前面用0補(bǔ)足;2、使學(xué)生初步掌握“當(dāng)乘 數(shù)比1小時(shí),積比被乘數(shù)?。划?dāng)乘數(shù)比1大時(shí),積比被乘數(shù)大”;3、培養(yǎng)學(xué)生的計(jì)算能力,自學(xué)能力和概括能力。本節(jié)課的教學(xué)重點(diǎn)是:讓學(xué)生掌握在定積的小數(shù) 時(shí),位數(shù)不夠的會(huì)用0補(bǔ)足。
一、說教材:稍復(fù)雜的方程的教學(xué)任務(wù)例1教學(xué)解方程ax±b=c及其應(yīng)用(列方程解形如ax±b=c的問題)(1)把解方程和用方程解決問題有機(jī)結(jié)合,在解決問題的過程中解較復(fù)雜的方程。(2)結(jié)合現(xiàn)實(shí)素材(足球上兩種顏色皮的塊數(shù))引出,這種問題用算術(shù)方法解決思考起來比較麻煩。(3解方程的過程其實(shí)是由解若干基本方程構(gòu)成的(y-20=4,2x=24),需要強(qiáng)調(diào)把2x看成一個(gè)整體。(4)可以列出不同的方程,如2x-4=20,關(guān)鍵是使學(xué)生理解數(shù)量關(guān)系。二、說學(xué)生:學(xué)生在前面已經(jīng)學(xué)習(xí)了簡(jiǎn)單的方程數(shù)量關(guān)系,及簡(jiǎn)單方程式的解法,而且我在前面的教學(xué)中已經(jīng)笨鳥先飛,讓學(xué)生接觸了形如:ax±b=c的方程式。三、說教法:根據(jù)學(xué)生的實(shí)際情況,我準(zhǔn)備在教學(xué)過程中,重點(diǎn)講解稍復(fù)雜方程式的數(shù)量關(guān)系式的分析研究,讓學(xué)生根據(jù)應(yīng)用題的題意列出正確的數(shù)量關(guān)系式。
2、了解測(cè)量在生活中的應(yīng)用,激發(fā)幼兒參與測(cè)量的興趣。3、愿意與同伴合作交流,解決問題?;顒?dòng)準(zhǔn)備:1、幼兒已有初步的測(cè)量經(jīng)驗(yàn)。2、尺子、繩子、軟尺、吸管、小棒、短積木、鉛筆、筷子、紙卡段、盒子、書等物品。3、記錄表、水彩筆、磁性板?;顒?dòng)過程:一、引題:提出任務(wù)今天小朋友來當(dāng)“小小測(cè)量員”,用三種不同的工具來測(cè)量相同的一條邊,并把測(cè)量結(jié)果記錄下來。
解:(1)根據(jù)題意,可得y=100025x,化簡(jiǎn)得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實(shí)數(shù),但在解決實(shí)際問題的過程中,自變量的取值范圍要根據(jù)實(shí)際情況來確定.解題過程中應(yīng)該注意對(duì)題意的正確理解.三、板書設(shè)計(jì)反比例函數(shù)概念:一般地,如果兩個(gè)變量x,y之間 的對(duì)應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達(dá)式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活實(shí)際,并為生活實(shí)際服務(wù),讓學(xué)生感受數(shù)學(xué)有用,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個(gè)反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個(gè)別輔導(dǎo),學(xué)生完畢教師給予評(píng)估肯定。II鞏固練習(xí):限時(shí)完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對(duì)兩種變化量,并且這兩個(gè)變化的量可以寫成 (k為常數(shù),k≠0)同時(shí)要注意幾點(diǎn)::①常數(shù)k≠0;②自變量x不能為零(因?yàn)榉帜笧?時(shí),該式?jīng)]意義);③當(dāng) 可寫為 時(shí)注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個(gè)變量相對(duì)應(yīng) 的任意一對(duì)對(duì)應(yīng)值的積來求得,只要k確定了,這個(gè)函數(shù)就確定了。
教學(xué)目標(biāo):1.能選擇不同的標(biāo)準(zhǔn)對(duì)同一類物品進(jìn)行不同的分類,掌握分類的方法。2.初步感知不同標(biāo)準(zhǔn)分類的意義,體驗(yàn)分類結(jié)果在不同標(biāo)準(zhǔn)下的多樣性。3.培養(yǎng)學(xué)生思維的靈活性和發(fā)散性,養(yǎng)成良好的學(xué)習(xí)、生活習(xí)慣。4.培養(yǎng)學(xué)生的操作能力、觀察能力、判斷能力、語(yǔ)言表達(dá)能力和合作交流的意識(shí)。5.讓學(xué)生體會(huì)到生活中處處有數(shù)學(xué),學(xué)會(huì)用學(xué)到的知識(shí)解決生活中的實(shí)際問題。教學(xué)重、難點(diǎn):重點(diǎn):選擇不同標(biāo)準(zhǔn)分類難點(diǎn):思維的發(fā)散性 關(guān)鍵:在直觀中拓展思維的時(shí)空教學(xué)準(zhǔn)備:鉛筆、實(shí)物卡片、學(xué)具袋(各種形狀、顏色各異的物品)教學(xué)過程:一、觀察分析 多重分類1.師出示如書本P39頁(yè)的鉛筆。(1)觀察這些鉛筆有什么不同?并把它們分分類。(2)四人一小組交流、討論可以怎么分類?是按什么分的?比比哪一組的分法最多。
【新知識(shí)點(diǎn)】認(rèn)識(shí)扇形統(tǒng)計(jì)圖統(tǒng)計(jì)填寫扇形統(tǒng)計(jì)圖根據(jù)扇形統(tǒng)計(jì)圖所提供的數(shù)據(jù)回答問題【單元教學(xué)目標(biāo)】1,認(rèn)識(shí)扇形統(tǒng)計(jì)圖,了解扇形統(tǒng)計(jì)圖的特點(diǎn).2,能夠看懂并會(huì)填扇形統(tǒng)計(jì)圖.3,會(huì)根據(jù)扇形統(tǒng)計(jì)圖所提供的數(shù)據(jù)回答一些簡(jiǎn)單的問題.4,進(jìn)一步了解統(tǒng)計(jì)在實(shí)際生活中的地位和作用.5,通過對(duì)相關(guān)素材的整理和分析,使學(xué)生受到一定的思想教育.【單元教學(xué)重難點(diǎn)】重點(diǎn):學(xué)生掌握扇形統(tǒng)計(jì)圖的特點(diǎn)和作用.難點(diǎn):在學(xué)習(xí)中體會(huì)各種統(tǒng)計(jì)圖的不同特點(diǎn).【教學(xué)建議】學(xué)生已經(jīng)系統(tǒng)地學(xué)習(xí)過有關(guān)條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的知識(shí),也初步認(rèn)識(shí)了扇形,而且也學(xué)習(xí)了有關(guān)百分?jǐn)?shù)的知識(shí),所有這些都為學(xué)校繼續(xù)學(xué)習(xí)統(tǒng)計(jì)圖的最后一部分內(nèi)容——扇形統(tǒng)計(jì)圖打下了良好的基礎(chǔ).【課時(shí)安排】
教學(xué)目標(biāo)1、認(rèn)識(shí)長(zhǎng)度單位毫米,建立1毫米的長(zhǎng)度概念,會(huì)用毫米厘米度量比較短的物體的長(zhǎng)度。2、培養(yǎng)學(xué)生的估測(cè)意識(shí)和能3、培養(yǎng)學(xué)生的動(dòng)手實(shí)踐和合作學(xué)習(xí)的能力,并感受生活中處處有數(shù)學(xué)。教學(xué)重點(diǎn):認(rèn)識(shí)長(zhǎng)度單位毫米,會(huì)用毫米度量物體長(zhǎng)度。教學(xué)難點(diǎn):培養(yǎng)學(xué)生的估測(cè)方法。教學(xué)過程一、引言二、估測(cè)數(shù)學(xué)書的長(zhǎng)、寬、厚的長(zhǎng)度。師:請(qǐng)同學(xué)們觀察數(shù)學(xué)書的長(zhǎng)、寬、厚,并估一估大約有多長(zhǎng),然后把估測(cè)的結(jié)果填入下表?估計(jì)實(shí)際測(cè)量數(shù)學(xué)書的長(zhǎng)數(shù)學(xué)書的寬數(shù)學(xué)書的厚生1:數(shù)學(xué)書的長(zhǎng)大約是21厘米、寬大約是14厘米、厚有1厘米。師:你是怎么想的?生1:因?yàn)?厘米大約有一個(gè)指甲長(zhǎng)那么長(zhǎng),數(shù)學(xué)書的長(zhǎng)大約就有21個(gè)指甲長(zhǎng)那么長(zhǎng),數(shù)學(xué)書的寬有14個(gè)指甲長(zhǎng)那么長(zhǎng),數(shù)學(xué)書的厚有1個(gè)指甲長(zhǎng)那么厚。
教具、學(xué)具準(zhǔn)備:各種形狀的紙、樹葉、繩子、直尺、卷尺等。教學(xué)過程:一、今天,老師給大家?guī)砹艘恍┪锲泛推矫鎴D形,你們認(rèn)識(shí)嗎?(逐一出示)誰(shuí)知道周長(zhǎng)是什么意思?請(qǐng)你具體指一指,你所喜歡的圖形的周長(zhǎng)是指什么樣的長(zhǎng)度。(一生指)二、探究求長(zhǎng)方形和正方形周長(zhǎng)的計(jì)算方法長(zhǎng)方形和正方形的周長(zhǎng)怎么求呢?正方形的周長(zhǎng)只要量一條邊長(zhǎng),乘4就可以了。(板書:邊長(zhǎng)×4)如果量出正方形的邊長(zhǎng)是5厘米,它的周長(zhǎng)是多少?5×4=20(厘米)。長(zhǎng)方形的周長(zhǎng)呢?量出四條邊的長(zhǎng)度,加起來就好了。長(zhǎng)+寬+長(zhǎng)+寬(板書)。如果長(zhǎng)是6厘米,寬是4厘米,它的周長(zhǎng)就是:6+4+6+4=20(厘米)。只要量?jī)纱尉涂梢粤?,量一個(gè)長(zhǎng)再乘2,量一個(gè)寬再乘2就行。長(zhǎng)×2+寬×2。即:6×2+4×2=20(厘米)。如果讓你求長(zhǎng)方形的周長(zhǎng),必須要知道什么條件?正方形呢?想清楚了,我們來解決一些實(shí)際問題。
教學(xué)追記:本堂課,在我?guī)ьI(lǐng)著學(xué)生利用教具進(jìn)行操作,在此基礎(chǔ)上,讓學(xué)生自主發(fā)現(xiàn)圓的面積與拼成長(zhǎng)方形面積的關(guān)系,圓的周長(zhǎng)、半徑和長(zhǎng)方形的長(zhǎng)、寬的關(guān)系,并推導(dǎo)出圓的面積計(jì)算公式。教學(xué)環(huán)形的面積計(jì)算時(shí),我充分放手給學(xué)生,讓學(xué)生通過思考討論領(lǐng)悟出求環(huán)形的面積是用外圓面積減去內(nèi)圓面積,并引導(dǎo)他們發(fā)現(xiàn)這兩種算法的一致性,同時(shí)提醒學(xué)生盡量使用簡(jiǎn)便算法,減少計(jì)算量。圓的周長(zhǎng)和面積的練習(xí)課教學(xué)目標(biāo):1、通過教學(xué)使學(xué)生理解并掌握?qǐng)A的周長(zhǎng)和面積計(jì)算方法。2、培養(yǎng)學(xué)生分析問題和解決問題的能力,發(fā)展學(xué)生的空間觀念。3、靈活解答幾何圖形問題。教學(xué)重點(diǎn):認(rèn)真審題,分辨求周長(zhǎng)或求面積。教學(xué)過程:一、復(fù)習(xí)。1、求出下面圓的周長(zhǎng)和面積并用彩筆描出周長(zhǎng),用陰影表示出面積。
4.操作。(“做一做”第2題) 全班同學(xué)動(dòng)手操作,1名同學(xué)到投影儀上操作。 (1)第1行擺5個(gè)△,在△下面擺○,△要比○多1個(gè)。第2行擺幾個(gè)○? (2)第1行擺4朵紅花,擺的黃花比紅花少1朵,第2行擺幾朵黃花? 二、運(yùn)用新知 教科書練習(xí)一第1~4題。 1.第1題:左圖是猴子多,右圖是骨頭多。(避免學(xué)生產(chǎn)生思維定勢(shì)) 2.第2題:學(xué)生觀察,看到公雞和鴨子雖然擺的一樣長(zhǎng),但疏密不同,進(jìn)而判斷擺的密的鴨子的只數(shù)多些,而公雞只數(shù)少些。 3.第3題:學(xué)生在觀察到第一排蛋糕同樣多的基礎(chǔ)上,只需比較兩盒中的第二排。第二排多的就多些,反之,就少些。 4.第4題:此題是在同一排中比較多少,當(dāng)?shù)?次循環(huán)出現(xiàn)珠子時(shí),只出現(xiàn)了一個(gè)黃色珠子,所以黃珠子多而紅珠子少。 三、總結(jié) 教師:今天我們學(xué)習(xí)了“比一比”,知道在比較時(shí),一定要一個(gè)對(duì)著一個(gè)比,就會(huì)得到正確的結(jié)果。
請(qǐng)寫出 推理過程:∵ ,在兩邊同時(shí)加上1得, + = + .兩邊分別通分得: 思考:請(qǐng)仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實(shí)例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個(gè)條件?三、 鞏固練習(xí):1.在相同時(shí)刻的物高與影長(zhǎng)成比例,如果一建筑在地面上影長(zhǎng)為50米,高為1.5米的測(cè)竿的影長(zhǎng)為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2
解析:想要看起來更美,則鞋底到肚臍的長(zhǎng)度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會(huì)更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會(huì)更美.易錯(cuò)提醒:要準(zhǔn)確理解黃金分割的概念,較長(zhǎng)線段的長(zhǎng)是全段長(zhǎng)的0.618.注意此題中全段長(zhǎng)是身高與高跟鞋鞋高之和.三、板書設(shè)計(jì)黃金分割定義:一般地,點(diǎn)C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點(diǎn) C黃金分割黃金分割點(diǎn):一條線段有兩個(gè)黃金分割點(diǎn)黃金比:較長(zhǎng)線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點(diǎn)的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會(huì)黃金分割的文化價(jià)值,在應(yīng)用中進(jìn)一步理解相關(guān)內(nèi)容,在實(shí)際操作、思考、交流等過程中增強(qiáng)學(xué)生的實(shí)踐意識(shí)和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣.
2.如何找一條線段的黃金分割點(diǎn),以及會(huì)畫黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動(dòng)與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗(yàn)來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個(gè)端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個(gè)試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時(shí)間,也節(jié)約了原材料.●板書設(shè)計(jì)
1. _____________________________________________2. _____________________________________________你會(huì)計(jì)算菱形的周長(zhǎng)嗎?三、例題精講例1.課本3頁(yè)例1例2.已知:在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),求證:OE=OF=OG=OH.四、課堂檢測(cè):1.已知四邊形ABCD是菱形,O是兩條對(duì)角線的交點(diǎn),AC=8cm,DB=6cm,菱形的邊長(zhǎng)是________cm.2.菱形ABCD的周長(zhǎng)為40cm,兩條對(duì)角線AC:BD=4:3,那么對(duì)角線AC=______cm,BD=______cm.3.若菱形的邊長(zhǎng)等于一條對(duì)角線的長(zhǎng),則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對(duì)角線長(zhǎng)為12厘米,則別一條對(duì)角線長(zhǎng)為________厘米.5.菱形的兩條對(duì)角線把菱形分成全等的直角三角形的個(gè)數(shù)是( ).(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長(zhǎng)和面積
(2)如果對(duì)應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時(shí),能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對(duì)應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個(gè)矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因?yàn)榫匦蔚乃膫€(gè)角均是直角,所以在有關(guān)矩形相似的問題中,只需看對(duì)應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時(shí),由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時(shí),則有a+b=-c.此時(shí)k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯(cuò)提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯(cuò).本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯(cuò)誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計(jì)比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會(huì)類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.