二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
三、說教學(xué)目標(biāo)基于以上對教材和學(xué)情的分析,我在研讀新課的要求,閱讀文學(xué)作品時也有著情感體驗說感知文章的內(nèi)涵,從中獲得對自然社會人生的有益啟示。從三維目標(biāo)三方面制定了如下教學(xué)目標(biāo):1.了解作者的生平與新月派詩歌“三美”主張,把握詩歌內(nèi)容2.通過誦讀法、自主合作探究法,多角度體會詩歌的語言美,這也是本節(jié)課的重難點。3,理解作者隱藏在文字下深沉的母愛,體會生命的美好。四、說教法學(xué)法教學(xué)的目的所在,正如葉圣陶先生所說,教是為了不教,學(xué)是為了會學(xué),教學(xué)中理應(yīng)靈活處理多種教學(xué)方法,因此,我將多媒體輔助教學(xué)法、提問法,點撥法的教法與學(xué)生誦讀品味法、圈點勾畫法、自主合作探究法的學(xué)法結(jié)合起來,以求達到事半功倍的效果。
二、活動目標(biāo): 基于這樣一種教育思想,接下來我來說說為本次活動制訂的目標(biāo)。幼兒教育的任何一個目標(biāo)都應(yīng)該為幼兒的終生發(fā)展作準(zhǔn)備,社會教育也不例外。根據(jù)幼兒的發(fā)展水平、經(jīng)驗、和需要我設(shè)計了以下幾個目標(biāo),分別對幼兒知識、情感、能力方面進行積極的引導(dǎo)。1、知道樹木是人類、動物的好朋友,了解綠化的好處,初步產(chǎn)生環(huán)保意識。2、遷移生活經(jīng)驗,激發(fā)幼兒熱愛和親近大自然的情感。3、通過看看、說說、聽聽發(fā)展幼兒語言表達能力、判斷能力。我把活動目標(biāo)一做為本次活動的重點和難點。
計算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計算結(jié)果的裝置。顯示器因計算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個鍵上,都標(biāo)明了這個鍵的功能。我們看鍵盤上標(biāo)有的鍵,是開機鍵,在開始使用計算器時先要按一下這個鍵,以接通電源,計算器的電源一般用5號電池或鈕扣電池。再看鍵,是關(guān)機鍵,停止使用計算器時要按一下這個鍵,來切斷計算器的電源,是清除鍵,按一下這個鍵,計算器就清除當(dāng)前顯示的數(shù)與符號。的功能是完成運算或執(zhí)行命令。是運算鍵,按一下這個鍵,計算器就執(zhí)行加法運算。
2學(xué)情分析 本課是廣西版小學(xué)三年級上冊美術(shù)第十七課的內(nèi)容,是一節(jié)繪畫課,屬于課程目標(biāo)中造型.表現(xiàn)的學(xué)習(xí)領(lǐng)域。在這一節(jié)課里,要求學(xué)生學(xué)會制作立體或半立體的昆蟲。生活在大自然里的昆蟲,形體可愛、色彩艷麗、種類繁多。本科融自然學(xué)科知識和美術(shù)學(xué)科知識為一體,通過引導(dǎo)學(xué)生欣賞昆蟲的形體、色彩、生理結(jié)構(gòu),教會學(xué)生甄別昆蟲。利用學(xué)生喜愛昆蟲的特點,引導(dǎo)學(xué)生運用圓形、半圓形、橢圓形等幾何圖形等幾何形體,并采用對折、剪貼的方法制作小昆蟲。激發(fā)學(xué)生豐富的想象力和創(chuàng)造愿望。
2學(xué)情分析 通過本課的學(xué)習(xí),調(diào)動和激發(fā)學(xué)生參與學(xué)習(xí)活動的熱情,使學(xué)生在游戲活動中通過教師的引導(dǎo)及自己動手實踐的親身體驗,感知泥性并自我解決如何使泥巴聽話,如何玩出新的方法這一問題。同時,在教師的鼓勵下,使學(xué)生能大膽自由的進行造型活動并大膽發(fā)表自我感受。3重點難點 1.探索感知泥性,歸納玩泥的幾種方法。2.感受、探索、泥性及口頭表達。
一.激趣導(dǎo)入?! ?. 教師展示做好的漂亮紙袋,讓孩子們產(chǎn)生想要動手的愿望。 2.結(jié)合多媒體課件,出示漂亮紙袋?! ⊥瑢W(xué)們,這些袋子漂亮嗎?你喜歡嗎?發(fā)現(xiàn)這些紙袋都是什么做成的?下面我們就來做一做這些漂亮的紙袋?! 《畬W(xué)習(xí)制作紙袋的基本過程?! ?.教師出示制作紙袋需要準(zhǔn)備好的東西,讓孩子們自主檢查是否準(zhǔn)備齊全。 2.多媒體出示紙袋制作步驟,讓學(xué)生注意觀察,清晰每一步制作的過程: ?。?)把長方形的對折,畫上虛線,用小剪刀剪去我們不需要的部分,然后用雙面膠粘貼,形成一個紙袋。
2學(xué)情分析 一年級的小朋友比較好動,撕紙對于他們來說比用彩筆作畫更加自由、隨意,簡便易行,且更加生動、自然,更能體現(xiàn)稚拙、率真的天性,釋放自己。通過大膽的撕紙來表達心中所想,培養(yǎng)學(xué)生的創(chuàng)造和動手能力。3重點難點 重點:通過撕紙拼貼的方法表現(xiàn)一種動物難點:撕的方法
2學(xué)情分析 1、這一課是一年級的“造型·表現(xiàn)”學(xué)習(xí)領(lǐng)域,一年級孩子自制力較差,注意力集中時間不長,缺乏一定的造型能力,但好奇心很強,表現(xiàn)欲望非常強烈,非常希望得到老師和同學(xué)們的認可,從他們的興趣入手就能達到事半功倍的效果;2、教學(xué)方式應(yīng)該是直觀的;3、讓學(xué)生通過欣賞與想象進行創(chuàng)作,激發(fā)他們對大自然的興趣,感受大自然的美。
教學(xué)過程:一、組織教學(xué),導(dǎo)入學(xué)習(xí)1.觀察導(dǎo)入,激發(fā)興趣(教具出示)2.教師和學(xué)生一起做猜節(jié)日的游戲,激發(fā)學(xué)生的興趣。 每年的9月10日都是教師們最開心的日子,也是學(xué)生們表達對老師尊敬的日子,中國自古以來便有尊師重教的傳統(tǒng),《教師法》 第四條規(guī)定全社會應(yīng)當(dāng)尊重教師。
2學(xué)情分析本課內(nèi)容選用了苗族阿姐的背簍,黎族阿爸的魚籠,竹搖籃、簸箕等借助家庭中常見的竹器作為學(xué)習(xí)內(nèi)容,目的是要求學(xué)生用線描的方法對竹器的外形及竹編的篾紋進行描繪,鍛煉學(xué)生對事物的觀察能力和表現(xiàn)能力。在此之前學(xué)生已經(jīng)學(xué)過了如何用線描的方式描繪生活中的小物件,這為過渡到本課內(nèi)容的學(xué)習(xí)起到了鋪墊作用,同時為后面的素描教學(xué)內(nèi)容打下造型基礎(chǔ)。
3學(xué)情分析 鼓的歷史很悠久,中國在原始社會時期就有了鼓。古時候,鼓曾被廣泛用于祭祀、戰(zhàn)爭、宗教等場合。在現(xiàn)代,鼓也廣泛應(yīng)用于生活的各個領(lǐng)域,如生活娛樂、節(jié)日慶典,人們用它來表達思想、抒發(fā)感情。把鼓作為學(xué)習(xí)內(nèi)容,目的是讓學(xué)生通過本課知識的學(xué)習(xí),大略知道鼓的來源和作用等有關(guān)鼓的文化知識,學(xué)習(xí)表現(xiàn)打鼓的動態(tài),更好的體驗美術(shù)造型表現(xiàn)的樂趣,增加民族自豪感。4重點難點 教學(xué)重點:學(xué)習(xí)運用繪畫語言創(chuàng)作少數(shù)民族同胞打鼓的形象。教學(xué)難點:在創(chuàng)作中大膽的、形象的表現(xiàn)出活靈活現(xiàn)的人物動態(tài)。
2教學(xué)目標(biāo)1、初步了解鼓的文化,激發(fā)學(xué)生熱愛我國民間民俗文化。2、用繪畫的方式表現(xiàn)人物動態(tài)。3重點難點教學(xué)重點:學(xué)習(xí)運用繪畫語言創(chuàng)作少數(shù)民族同胞打鼓的熱鬧場景。教學(xué)難點:畫面線形的把握和構(gòu)圖安排,顏色的搭配。
2學(xué)情分析 新入學(xué)的學(xué)生第一次接觸正規(guī)化的美術(shù)課,對一年級學(xué)生來說是新 奇、有趣、好玩的,而且新生入學(xué)前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個性,但這些會造成學(xué)習(xí)的不一致性、習(xí)慣不統(tǒng)一化,給 美術(shù)課的課堂帶來不必要的麻煩。因此, 對待這些剛進入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學(xué)生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機會, 激發(fā)孩子們對美術(shù)學(xué)習(xí)的興趣,讓孩子們能發(fā) 現(xiàn)美,有創(chuàng)造美的想法。
教學(xué)目標(biāo) 知識目標(biāo):通過欣賞大自然的圖片,感知大自然不同特點的美。 技能目標(biāo):能用自己喜歡的方式表達對不同自然美的感受。 情感態(tài)度與價值觀:培養(yǎng)學(xué)生熱愛大自然的情感,及愛護大自然的情感?! 〗虒W(xué)重點讓學(xué)生感受大自然不同的美,了解大自然的豐富,并能用簡單的語言表達自己的感受?! 〗虒W(xué)難點學(xué)習(xí)用審美的眼光去觀察大自然。 主要教法啟發(fā)引導(dǎo)法、自學(xué)嘗試法 學(xué)習(xí)指導(dǎo)體驗探究法輔助指導(dǎo)法 教學(xué)資源教師:教材、課件?! W(xué)生:教材、自然風(fēng)光片 教學(xué)過程: 教學(xué)活動教學(xué)意圖 教師學(xué)生
二、說教學(xué)目標(biāo)。 1.能用正確的情感來朗讀小鳥與大樹、樹根、門和小女孩四個對話。(知識目標(biāo)) 2.進一步鞏固默讀和朗讀能力,學(xué)會多元交流,多向?qū)υ挕?(能力目標(biāo)) 3.體會小鳥與大樹間真摯的友情,使學(xué)生感悟到真正的友情是建立在誠信的基礎(chǔ)上的。
《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標(biāo)1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會判斷函數(shù)的奇偶性.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學(xué)們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標(biāo)是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)
《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學(xué)生的邏輯推理能力。重點:基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點:基本不等式的推導(dǎo)以及證明過程.
例7 用描述法表示拋物線y=x2+1上的點構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設(shè)問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數(shù).變式2.[變條件,變設(shè)問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數(shù).解題技巧(認識集合含義的2個步驟)一看代表元素,是數(shù)集還是點集,二看元素滿足什么條件即有什么公共特性。