提供各類精美PPT模板下載
當前位置:首頁 > Word模板 > 教育教學 > 課件教案> 人教A版高中數(shù)學必修一誘導公式教學設計(1)
  • 收藏模板
    下載模板
  • 模板信息
  • 更新時間:2023-10-22
  • 字數(shù):約4902字
  • 頁數(shù):約9頁
  • 格式:.docx
  • 推薦版本:Office2016及以上版本
  • 售價:5 金幣 / 會員免費

您可能喜歡的文檔

  • 人教A版高中數(shù)學必修一誘導公式教學設計(2)

    人教A版高中數(shù)學必修一誘導公式教學設計(2)

    本節(jié)主要內(nèi)容是三角函數(shù)的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(1)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結合及轉化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質的探究,培養(yǎng)學生數(shù)形結合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (1) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (1) 教學設計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。

  • 查看更多相關Word文檔

誘導公式教學設計(1)

本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修第一冊一》(人教A版)第五章《三角函數(shù)》,本節(jié)課是第5課時。本節(jié)主要是推導誘導公式二、三、四、五、六,并利用它們解決一些求值、化簡、證明三角恒等式。

本小節(jié)介紹的五組誘導公式在內(nèi)容上既是公式一的延續(xù),又是后繼學習內(nèi)容的基礎,它們與公式一組成的六組誘導公式,用于解決求任意角的三角函數(shù)值的問題以及有關三角函數(shù)的化簡、證明等問題。

課件教案

在誘導公式的學習中,化歸思想貫穿始末,這一典型的數(shù)學思想,無論在本節(jié)中的分析導入,還是利用誘導公式將求任意角的三角函數(shù)值轉化為求銳角的三角函數(shù)值,均清晰地得到體現(xiàn),在教學中注意數(shù)學思想滲透于知識的傳授之中,讓學生了解化歸思想,形成初步的化歸意識特別是在本課時的三個轉化問題引入后,為什么確定180+a角為第一研究對象,a角為第二研究對象,正是化歸思想的運用。

課本例題實際上是誘導公式的綜合運用,難點在于需要把所求的角看成是一個整體的任意角,學生第一次接觸到此題型,思維上有困難,要多加引導分析,另外,誘導公式中角度制亦可轉化為弧度制,但必須注意同一個公式中只能采取一種制度,因此要加強角度制與弧度制的轉化的練習。

課程目標

學科素養(yǎng)

A.借助單位圓,推導出正弦、余弦和正切的誘導公式;

B.能正確運用誘導公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關三角函數(shù)求值、化簡和恒等式證明問題;

C.了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想。

1.數(shù)學抽象:利用單位圓找不同角的關系;

2.邏輯推理:誘導公式的推導;

3.數(shù)學運算:有關三角函數(shù)求值、化簡和恒等式證明問題。

1.教學重點:誘導公式的記憶、理解、運用;

2.教學難點:誘導公式的推導、記憶及符號的判斷。

多媒體

教學過程

教學設計意圖

核心素養(yǎng)目標

一、復習回顧,溫故知新

1. 任意角三角函數(shù)的定義

【答案】設角它的終邊與單位圓交于點。

那么(1)

(2)

2.誘導公式一

,其中,。

終邊相同的角的同一三角函數(shù)值相等

二、探索新知

思考1:

(1).終邊相同的角的同一三角函數(shù)值有什么關系?

【答案】相等

(2).角 -α與α的終邊 有何位置關系?

【答案】終邊關于x軸對稱

(3).角與α的終邊 有何位置關系?

【答案】終邊關于y軸對稱

(4).角與α的終邊 有何位置關系?

【答案】終邊關于原點對稱

思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?

【答案】點P(x, y)關于原點對稱點P1(-x, -y)

點P(x, y)關于x軸對稱點P2(x, -y)

點P(x, y)關于y軸對稱點P3(-x, y)

探究一 如圖, 角的三角函數(shù)值與課件教案的三角函數(shù)值之間有什么關系?

角π + a與角a的終邊關于原點O對稱,

,

(公式二)

sin(π + a) = -sin a,

cos(π + a) = -cos a,

tan(π + a) = tan a。

探究二 角與的三角函數(shù)值之間有什么關系

角-a與角a的終邊關于x軸對稱,有。。

(公式三) sin(-a) = -sin a,

cos(-a) = cos a,

tan(-a) = -tan a。

探究三 根據(jù)上兩組公式的推導,你能否推導出角與角的三角函數(shù)值之間的關系?

角與角的終邊關于軸對稱,故有

所以,(公式二)

sin(π - a) = sin a,

cos(π - a) = -cos a,

tan(π - a) = -tan a。

思考3:這四個誘導公式有什么規(guī)律?

的三角函數(shù)值,等于課件教案的同名函數(shù)值,前面加上一個把課件教案看成銳角時原函數(shù)值的符號.

總結為一句話:函數(shù)名不變,符號看象限。

例1.求下列三角函數(shù)值

(1)cos225;(2)sin;(3)sin();(4)tan(-2 040).

活動:這是直接運用公式的題目類型,讓學生熟悉公式,通過練習加深印象,逐步達到熟練、正確地應用.讓學生觀察題目中的角的范圍,對照公式找出哪個公式適合解決這個問題.

解:(1)cos225=cos(180+45)=-cos45=;

(2)sin=sin(2π)=sin=sin=sin=;

(3)sin()=-sin=-sin(5π+)

=-(-sin)=;

(4)tan(-2 040)=-tan2 040=-tan(6360-120)

=tan120=tan(180-60)

=-tan60=.

思考4:通過例題,你對誘導公式一、二、三、四有什么進一步的認識?你能歸納任意角的三角函數(shù)化為銳角三角函數(shù)的步驟嗎?

利用公式一—四把任意角的三角函數(shù)轉化為銳角的三角函數(shù),一般可按下列步驟進行:

上述步驟體現(xiàn)了由未知轉化為已知的轉化與化歸的思想方法.

例2.化簡:

解析見教材

探究四 作P(x,y)關于直線的對稱點P1,以OP1為終邊的角課件教案與角有什么關系?角與角的三角函數(shù)值之間有什么關系?

探究五:作點P(x,y)關于y軸的對稱點P5,又能得到什么結論?

公式六

思考5:你能概括一下公式五、六的共同特點和規(guī)律嗎?

【答案】 的正弦(余弦)函數(shù)值,分別等于α的

余弦(正弦)函數(shù)值,前面加上一個把α看成銳角時原函數(shù)值的符號.

思考6:誘導公式可統(tǒng)一為的三角函數(shù)與α的三角函數(shù)之間的關系,你有什么辦法記住這些公式?

【答案】口訣:奇變偶不變,符號看象限

口訣的意義:

例3. 證明:。

解析見教材

例4 化簡

解析見教材

例5 已知,且 ,求的值。

解析見教材

通過復習上節(jié)所學任意角三角函數(shù)的定義與誘導公式一,引入本節(jié)新課。建立知識間的聯(lián)系,提高學生概括、類比推理的能力。

通過思考讓學生了解角終邊之間的關系,為推導誘導公式作鋪墊,提高學生的解決問題、分析問題的能力。

通過探究,由圖形觀察角課件教案的三角函數(shù)值與課件教案的三角函數(shù)值之間有什么關系,進而得到誘導公式二,提高學生分析問題、概括能力。

通過探究,由圖形觀察角課件教案的三角函數(shù)值與課件教案的三角函數(shù)值之間有什么關系,進而得到誘導公式三,提高學生分析問題、概括能力。

通過探究,由圖形觀察角課件教案的三角函數(shù)值與課件教案的三角函數(shù)值之間有什么關系,進而得到誘導公式三,提高學生分析問題、概括能力。

通過思考,尋找這四個誘導公式的共同規(guī)律,提高學生分析問題、概括能力。


通過例題練習誘導公式,進一步理解誘導公式的作用,提高學生解決問題的能力。

通過思考總結用誘導公式求任意角三角函數(shù)值的步驟,提高學生解決問題的能力。

通過探究,由圖形觀察角和角的三角函數(shù)值與課件教案的三角函數(shù)值之間有什么關系,進而得到誘導公式五、六,提高學生分析問題、概括能力。

通過思考,尋找誘導公式的共同規(guī)律,提高學生分析問題、概括能力。

通過例題的講解,讓學生進一步理解用誘導公式化簡三角函數(shù)關系式、求任意角的三角函數(shù)值,提高學生解決與分析問題的能力。

三、達標檢測

1.下列各式不正確的是( )

A.sin(α+180)=-sin α

B.cos(-α+β)=-cos(α-β)

C.sin(-α-360)=-sin α

D.cos(-α-β)=cos(α+β)

【解析】 cos(-α+β)=cos[-(α-β)]=cos(α-β),故B項錯誤.

【答案】 B

2.sin 600的值為( )

A. B.-

C. D.-

【解析】 sin 600=sin(720-120)=-sin 120

=-sin(180-60)=-sin 60=-.故選D.

【答案】 D

3.cos 1 030=( )

A.cos 50 B.-cos 50

C.sin 50 D.-sin 50

【解析】 cos 1 030=cos(3360-50)

=cos(-50)=cos 50.

【答案】 A

4.若sin<0,且cos>0,則θ是( )

A.第一象限角 B.第二象限角

C.第三角限角 D.第四象限角

【解析】 由于sin=cos θ<0,

cos=sin θ>0,所以角θ的終邊落在第二象限,故選B.

【答案】 B

5.已知sin φ=,求cos+sin(3π-φ)的值.

【解】 ∵sin φ=,

∴cos=cos

=cos

=cos=sin φ=,

∴cos+sin(3π-φ)=+sin(π-φ)

=+sin φ=.

通過練習鞏固本節(jié)所學知識,通過學生解決問題的能力,感悟其中蘊含的數(shù)學思想,增強學生的應用意識。



最新課件教案文檔
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。

  • 公司2024第一季度意識形態(tài)工作聯(lián)席會議總結

    公司2024第一季度意識形態(tài)工作聯(lián)席會議總結

    一是要把好正確導向。嚴格落實主體責任,逐條逐項細化任務,層層傳導壓力。要抓實思想引領,把理論學習貫穿始終,全身心投入主題教育當中;把理論學習、調查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學思用貫通、知信行統(tǒng)一,努力在以學鑄魂、以學增智、以學正風、以學促干方面取得實實在在的成效。更加深刻領會到******主義思想的科學體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領,要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質量發(fā)展作出貢獻。二是要加強應急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預警和應對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質量發(fā)展標桿礦井”、建設“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應對。加強職工群眾熱點問題的輿論引導,做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應對。

  • 關于2024年上半年工作總結和下半年工作計劃

    關于2024年上半年工作總結和下半年工作計劃

    二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡輿論陣地建設和管理,把握重大時間節(jié)點,科學分析研判意識形態(tài)領域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設,鍛造堅強有力的基層黨組織。一是提高基層黨組織建設力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學習活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標同向、部署同步、工作同力。三是加強高素質專業(yè)化黨員隊伍管理。配齊配強支部黨務工作者,把黨務工作崗位作為培養(yǎng)鍛煉干部的重要平臺。

  • XX區(qū)民政局黨支部開展主題教育工作情況總結報告

    XX區(qū)民政局黨支部開展主題教育工作情況總結報告

    二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設,深入了解基層科技工作、學術交流、組織建設等方面的實際情況,全面了解群眾的真實需求,解決相關問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關鍵工具和展示平臺。目前,“民聲熱線”已回應了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質性的變化和效果。接下來,我局將繼續(xù)深入學習主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風貌和活力。

  • 交通運輸局在巡回指導組主題教育階段性工作總結推進會上的匯報發(fā)言

    交通運輸局在巡回指導組主題教育階段性工作總結推進會上的匯報發(fā)言

    今年3月,市政府出臺《關于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設計方案。牢牢把握高質量發(fā)展這個首要任務,在學思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質量發(fā)展持續(xù)走在前列。以學促干建新功,關鍵在推動高質量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調立足新發(fā)展階段、貫徹新發(fā)展理念、構建新發(fā)展格局,推動高質量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。

  • XX區(qū)文旅體局2023年工作總結 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結 及2024年工作安排

    三、2024年工作計劃一是完善基層公共文化服務管理標準化模式,持續(xù)在公共文化服務精準化上探索創(chuàng)新,圍繞群眾需求,不斷調整公共文化服務內(nèi)容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務按時保質保量完成。服務“雙減”政策,持續(xù)做好校外培訓機構審批工作,結合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務教育階段學生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。

  • “四零”承諾服務創(chuàng)建工作總結

    “四零”承諾服務創(chuàng)建工作總結

    (二)堅持問題導向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務質量上下功夫,積極學習借鑒其他部門及xx關于“四零”承諾服務創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應新時代人民群眾對政務服務的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結作風整頓“四零”承諾服務創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。

  • 2024年度工作計劃匯編(18篇)

    2024年度工作計劃匯編(18篇)

    1.市政基礎設施項目5項,總建設里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學院配套道路項目在黃麓鎮(zhèn)完成圍墻建設后即可進場施工。2.公益性建設項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學擴建工程已完成施工、監(jiān)理招標掛網(wǎng),2月上旬完成全部招標工作;合肥職業(yè)技術學院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結合醫(yī)院)新建工程正在按照既定計劃推進,預計4月中下旬掛網(wǎng)招標。

  • 駐村工作隊2024年第一季度工作總結匯編(4篇)

    駐村工作隊2024年第一季度工作總結匯編(4篇)

    三是做大做強海產(chǎn)品自主品牌。工作隊于xx年指導成立的冬松村海產(chǎn)品合作社,通過與消費幫扶平臺合作,在工作隊各派出單位、社會團體、個人支持下,已獲得逾xx萬元銷售額。2022年底工作隊推動合作社海產(chǎn)品加工點擴建的工作方案已獲批,待資金下?lián)芎髮⒄絾訑U建工作。四是積極助企紓困,帶動群眾增收致富。工作隊利用去年建立的xx鎮(zhèn)產(chǎn)業(yè)發(fā)展工作群,收集本地企業(yè)在產(chǎn)品銷售、技術、人力、資金、運營、用地等方面的需求,并加大xx支持鄉(xiāng)村振興力度,xx助理赴各村委開展多場xx政策支持鄉(xiāng)村振興宣講活動,本季度有x萬元助農(nóng)貸款獲批,xx萬貸款正在審批中。在壯大既有產(chǎn)業(yè)的同時,完善聯(lián)農(nóng)帶農(nóng)機制,一方面鼓勵企業(yè)雇用本地農(nóng)戶就業(yè),另一方面計劃與本地農(nóng)戶簽訂長期收購合同,讓農(nóng)民種得放心、種得安心,帶動當?shù)厝罕姽餐赂弧?/p>

  • 主題教育總結常用提綱大全

    主題教育總結常用提綱大全

    第一,主題教育是一次思想作風的深刻洗禮,初心傳統(tǒng)進一步得到回歸。第二,主題教育是一次沉疴積弊的集中清掃,突出問題進一步得到整治。第三,主題教育是一次強化為民服務的生動實踐,赤子之情進一步得到提振。第四,主題教育是一次激發(fā)創(chuàng)業(yè)擔當?shù)挠欣鯔C,發(fā)展層次進一步得到提升。2.第一,必須提領思想、武裝思想。第二,必須聚焦問題、由表及里。第三,必須領導帶頭、以上率下。第四,必須務實求實、認真較真。3.一是抬高政治站位,堅持大事大抓。二是堅持思想領先,狠抓學習教育。三是突出問題導向,深入整改糾治。四是堅持領導帶頭,發(fā)揮表率作用。4.一是立足“早”字抓籌劃。二是著眼“活”字抓學習。三是圍繞“統(tǒng)”字抓協(xié)調。5.一是形勢所需。二是任務所系。三是職責所在。四是制度所定。6.一要提升認識。二要積極作為。三要密切協(xié)作。

  • 主題教育專題讀書班結班總結講話

    主題教育專題讀書班結班總結講話

    第二,要把調查研究貫穿始終,實干擔當促進發(fā)展。開展好“察實情、出實招”“破難題、促發(fā)展”“辦實事、解民憂”專項行動,以強化理論學習指導發(fā)展實踐,以深化調查研究推動解決發(fā)展難題。領導班子成員要每人牽頭XX個課題開展調查研究,XX月底前召開調研成果交流會,集思廣益研究對策措施。各部門、各單位要制定調研計劃,通過座談訪談、問卷調查、統(tǒng)計分析等方式開展調查研究,解決工作實際問題,幫助基層單位和客戶解決實際困難。第三,要把檢視問題貫穿始終,廉潔奉公樹立新風。認真落實公司主題教育整改整治工作方案要求,堅持邊學習、邊對照、邊檢視、邊整改,對標對表xxx新時代中國特色社會主義思想,深入查擺不足,系統(tǒng)梳理調查研究發(fā)現(xiàn)的問題、推動發(fā)展遇到的問題、群眾反映強烈的問題,結合巡視巡察、審計和內(nèi)外部監(jiān)督檢查發(fā)現(xiàn)的問題,形成問題清單。