一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學(xué)們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標(biāo)是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。
《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴謹性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學(xué)生的邏輯推理能力。重點:基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點:基本不等式的推導(dǎo)以及證明過程.
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進一步體會的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。
課程目標(biāo)
1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題
2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
數(shù)學(xué)學(xué)科素養(yǎng)
1.數(shù)學(xué)抽象:理解六組誘導(dǎo)公式;
2.邏輯推理: “借助單位圓中三角函數(shù)的定義推導(dǎo)出六組誘導(dǎo)公式;
3.數(shù)學(xué)運算:利用六組誘導(dǎo)公式進行化簡、求值與恒等式證明.
重點:借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù);
難點:解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題.
教學(xué)方法:以學(xué)生為主體,小組為單位,采用誘思探究式教學(xué),精講多練。
教學(xué)工具:多媒體。
一、 情景導(dǎo)入
利用誘導(dǎo)公式(一),將任意范圍內(nèi)的角的三角函數(shù)值轉(zhuǎn)化到角后,又如何將角間的角轉(zhuǎn)化到角呢?
除此之外還有一些角,它們的終邊具有某種特殊關(guān)系,如關(guān)于坐標(biāo)軸對稱、關(guān)于原點對稱等。那么它們的三角函數(shù)值有何關(guān)系呢?
要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
二、預(yù)習(xí)課本,引入新課
閱讀課本188-192頁,思考并完成以下問題
1.πα,-α的終邊與α的終邊有怎樣的對稱關(guān)系?
2.誘導(dǎo)公式二、三、四的內(nèi)容是什么?
3. α的終邊與α的終邊有怎樣的對稱關(guān)系?
4.誘導(dǎo)公式五、六的內(nèi)容是什么?
要求:學(xué)生獨立完成,以小組為單位,組內(nèi)可商量,最終選出代表回答問題。
三、新知探究
1.公式一::終邊相同的角
2.公式二:終邊關(guān)于X軸對稱的角
3.公式三:終邊關(guān)于Y軸對稱的角
4.公式四:任意與的終邊都是關(guān)于原點中心對稱的終邊關(guān)于原點對稱的角
5.公式五: 終邊關(guān)于直線y=x對稱的角的誘導(dǎo)公式(公式五):.
6、公式六:+α型誘導(dǎo)公式(公式六):.
【說明】:①公式中的指任意角;②在角度制和弧度制下,公式都成立;
③記憶方法: “奇變偶不變,符號看象限”;
【方法小結(jié)】:用誘導(dǎo)公式可將任意角的三角函數(shù)化為銳角的三角函數(shù),其一般方向是:
①化負角的三角函數(shù)為正角的三角函數(shù);
②化為[0,2]內(nèi)的三角函數(shù);
③化為銳角的三角函數(shù)。
可概括為:“負化正,大化小,化到銳角為終了”(有時也直接化到銳角求值)。
四、典例分析、舉一反三
題型一 給角求值
例1求下列各三角函數(shù)式的值:
(1)sin(-660);(2)cos ;(3)2cos 660+sin 630;
(4)tansin.
【答案】(1) ;(2) -;(3)0;(4) .
【解析】 (1)因為-660=-2360+60,
所以sin(-660)=sin 60=.
(2)因為=6π+,所以cos =cos =-.
(3)原式=2cos(720-60)+sin(720-90)
=2cos 60-sin 90=2-1=0.
(4)tan sin
=tansin
=tan sin ==.
解題技巧:(利用誘導(dǎo)公式求任意角的三角函數(shù)值的步驟)
利用誘導(dǎo)公式求任意角的三角函數(shù)值的步驟:
跟蹤訓(xùn)練一
1.求下列各三角函數(shù)式的值:
(1)sin 1 320;(2)cos;(3)tan(-945).
【答案】(1) -;(2) -;(3)-1.
【解析】 (1)sin1 320=sin(4360-120)
=sin(-120)=-sin(180-60)
=-sin 60=-.
(2)cos=cos=cos
=-cos=-.
(3)tan(-945)=-tan 945
=-tan(225+2360)=-tan 225
=-tan(180+45)=-tan 45=-1.
題型二 化簡、求值
例2化簡.
【答案】見解析.
【解析】原式=
解題技巧:(化簡求值的方法)
用誘導(dǎo)公式化簡求值的方法:
? ?1.對于三角函數(shù)式的化簡求值問題,一般遵循誘導(dǎo)公式先行的原則,即先用誘導(dǎo)公式化簡變形,達到角的統(tǒng)一,再進行切化弦,以保證三角函數(shù)名最少.
? .對于kπα和這兩套誘導(dǎo)公式,切記運用前一套公式不變名,而后一套公式必須變名.即“奇變偶不變,符號看象限”.
跟蹤訓(xùn)練二
1.化簡:sin(π-α)cos(2π-α).
2.已知cos=,求+的值.
【答案】1.見解析;2..
【解析】 1.原式=sin αcos α=sin αcos α=sin2α.
2. 原式=+=-sin α-sin α=-2sin α.
又cos=,
所以-sin α=.
所以原式=-2sin α=.
題型三 給值求值
例3 已知
【答案】.
【解析】因為,所以,
又因為所以在第二象限.
所以
易知
所以
解題技巧:(給值求值解題技巧)
1.給值求值型問題,若已知條件或待求式較復(fù)雜,有必要根據(jù)誘導(dǎo)公式化到最簡,再確定相關(guān)的值.
轉(zhuǎn)載請注明出處!本文地址:
http://17025calibrations.com/worddetails_6214337.html1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強的毅力。
一是要把好正確導(dǎo)向。嚴格落實主體責(zé)任,逐條逐項細化任務(wù),層層傳導(dǎo)壓力。要抓實思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實實在在的成效。更加深刻領(lǐng)會到******主義思想的科學(xué)體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領(lǐng),要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻。二是要加強應(yīng)急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預(yù)警和應(yīng)對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應(yīng)對。加強職工群眾熱點問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對。
二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時間節(jié)點,科學(xué)分析研判意識形態(tài)領(lǐng)域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風(fēng)險隱患。積極響應(yīng)和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅強有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強高素質(zhì)專業(yè)化黨員隊伍管理。配齊配強支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉(zhuǎn)型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實際情況,全面了解群眾的真實需求,解決相關(guān)問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺。目前,“民聲熱線”已回應(yīng)了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風(fēng)貌和活力。
今年3月,市政府出臺《關(guān)于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結(jié)合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計方案。牢牢把握高質(zhì)量發(fā)展這個首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責(zé)任,奮力推動交通運輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動高質(zhì)量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質(zhì)量發(fā)展要堅持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務(wù)管理標(biāo)準化模式,持續(xù)在公共文化服務(wù)精準化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標(biāo)任務(wù)按時保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機構(gòu)審批工作,結(jié)合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標(biāo)準》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強的毅力。
(二)堅持問題導(dǎo)向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時代人民群眾對政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質(zhì)效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。
1.市政基礎(chǔ)設(shè)施項目5項,總建設(shè)里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關(guān)工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學(xué)院配套道路項目在黃麓鎮(zhèn)完成圍墻建設(shè)后即可進場施工。2.公益性建設(shè)項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學(xué)擴建工程已完成施工、監(jiān)理招標(biāo)掛網(wǎng),2月上旬完成全部招標(biāo)工作;合肥職業(yè)技術(shù)學(xué)院大維修三期已完成招標(biāo)工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標(biāo)工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結(jié)合醫(yī)院)新建工程正在按照既定計劃推進,預(yù)計4月中下旬掛網(wǎng)招標(biāo)。
三是做大做強海產(chǎn)品自主品牌。工作隊于xx年指導(dǎo)成立的冬松村海產(chǎn)品合作社,通過與消費幫扶平臺合作,在工作隊各派出單位、社會團體、個人支持下,已獲得逾xx萬元銷售額。2022年底工作隊推動合作社海產(chǎn)品加工點擴建的工作方案已獲批,待資金下?lián)芎髮⒄絾訑U建工作。四是積極助企紓困,帶動群眾增收致富。工作隊利用去年建立的xx鎮(zhèn)產(chǎn)業(yè)發(fā)展工作群,收集本地企業(yè)在產(chǎn)品銷售、技術(shù)、人力、資金、運營、用地等方面的需求,并加大xx支持鄉(xiāng)村振興力度,xx助理赴各村委開展多場xx政策支持鄉(xiāng)村振興宣講活動,本季度有x萬元助農(nóng)貸款獲批,xx萬貸款正在審批中。在壯大既有產(chǎn)業(yè)的同時,完善聯(lián)農(nóng)帶農(nóng)機制,一方面鼓勵企業(yè)雇用本地農(nóng)戶就業(yè),另一方面計劃與本地農(nóng)戶簽訂長期收購合同,讓農(nóng)民種得放心、種得安心,帶動當(dāng)?shù)厝罕姽餐赂弧?/p>
第一,主題教育是一次思想作風(fēng)的深刻洗禮,初心傳統(tǒng)進一步得到回歸。第二,主題教育是一次沉疴積弊的集中清掃,突出問題進一步得到整治。第三,主題教育是一次強化為民服務(wù)的生動實踐,赤子之情進一步得到提振。第四,主題教育是一次激發(fā)創(chuàng)業(yè)擔(dān)當(dāng)?shù)挠欣鯔C,發(fā)展層次進一步得到提升。2.第一,必須提領(lǐng)思想、武裝思想。第二,必須聚焦問題、由表及里。第三,必須領(lǐng)導(dǎo)帶頭、以上率下。第四,必須務(wù)實求實、認真較真。3.一是抬高政治站位,堅持大事大抓。二是堅持思想領(lǐng)先,狠抓學(xué)習(xí)教育。三是突出問題導(dǎo)向,深入整改糾治。四是堅持領(lǐng)導(dǎo)帶頭,發(fā)揮表率作用。4.一是立足“早”字抓籌劃。二是著眼“活”字抓學(xué)習(xí)。三是圍繞“統(tǒng)”字抓協(xié)調(diào)。5.一是形勢所需。二是任務(wù)所系。三是職責(zé)所在。四是制度所定。6.一要提升認識。二要積極作為。三要密切協(xié)作。
第二,要把調(diào)查研究貫穿始終,實干擔(dān)當(dāng)促進發(fā)展。開展好“察實情、出實招”“破難題、促發(fā)展”“辦實事、解民憂”專項行動,以強化理論學(xué)習(xí)指導(dǎo)發(fā)展實踐,以深化調(diào)查研究推動解決發(fā)展難題。領(lǐng)導(dǎo)班子成員要每人牽頭XX個課題開展調(diào)查研究,XX月底前召開調(diào)研成果交流會,集思廣益研究對策措施。各部門、各單位要制定調(diào)研計劃,通過座談訪談、問卷調(diào)查、統(tǒng)計分析等方式開展調(diào)查研究,解決工作實際問題,幫助基層單位和客戶解決實際困難。第三,要把檢視問題貫穿始終,廉潔奉公樹立新風(fēng)。認真落實公司主題教育整改整治工作方案要求,堅持邊學(xué)習(xí)、邊對照、邊檢視、邊整改,對標(biāo)對表xxx新時代中國特色社會主義思想,深入查擺不足,系統(tǒng)梳理調(diào)查研究發(fā)現(xiàn)的問題、推動發(fā)展遇到的問題、群眾反映強烈的問題,結(jié)合巡視巡察、審計和內(nèi)外部監(jiān)督檢查發(fā)現(xiàn)的問題,形成問題清單。