第一單元 圓1.圓的定義:平面上的一種曲線圖形。2.將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等.3.半徑:連接圓心到圓上任意一點的線段叫作半徑。半徑一般用字母r表示。把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。4.圓心確定圓的位置,半徑確定圓的大小。5.直徑:通過圓心并且兩端都在圓上的線段叫作直徑。直徑一般用字母d表示。6.在同一個圓內(nèi),所有的半徑都相等,所有的直徑都相等。7.在同一個圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。8.在同一個圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的一半。用字母表示為:d=2r r =1/2d 用文字表示為:半徑=直徑÷2 直徑=半徑×2
1.?dāng)⑹鍪剑河谜蚓C合的方法,對消息中最新鮮、最主要的事實作扼要的敘述。2.描寫式:對消息中的主要事實或某一個有意義的側(cè)面、細節(jié),作簡潔樸素而又有特點的描寫。3.評論式:對所報道的事實,作簡潔、精辟的評論,以揭示事件的意義和目的。4.提問式:把主要事實用提問的方式寫出來,使報道的問題更為尖銳,以引起讀者的注意。目標(biāo)導(dǎo)學(xué)三:展開豐實的主體主體是消息的軀干,是對導(dǎo)語內(nèi)容的展開和補充。其結(jié)構(gòu)形式有兩種:1.先后順序。即按事物發(fā)展的先后順序安排層次。2.邏輯順序。即按事物的邏輯關(guān)系(如因果、并列、主次、點面等關(guān)系)安排層次。目標(biāo)導(dǎo)學(xué)四:介紹背景和結(jié)語消息的背景和結(jié)語是一篇消息中可有可無的內(nèi)容。1.背景是指消息所報道事實的歷史情況和環(huán)境條件。消息使用的背景材料一般有三類:(1)對比性的;(2)說明性的;(3)注釋性的。2.結(jié)語結(jié)語是消息的最后一句話或者一段話。有的消息已經(jīng)把事實說清楚了,就不需要結(jié)語了。常見的結(jié)語有三種形式:(1)概括小節(jié)式;(2)預(yù)測趨勢式;(3)提出問題式。
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
8、加強對音、體、美、等課程實施的監(jiān)督與檢查,確保上足課節(jié)。9、將學(xué)困生轉(zhuǎn)化工作及優(yōu)生培養(yǎng)工作落到實處。提高對學(xué)困生的關(guān)注度,加強對學(xué)困生的心理輔導(dǎo)及課業(yè)輔導(dǎo)。10、每周一次級部長會,每月一次學(xué)科長會,建立教務(wù)會議記錄,學(xué)科教研、活動記錄,教師上交材料記錄。11、本學(xué)期共21周,實際授課17周。五、教學(xué)工作配檔表九月1、劃分班級,安排好教師課務(wù),排好課程表。2、參加XX市教研室召開的小學(xué)教學(xué)教研工作會議3、安排各科教師參加XX市教研室組織的學(xué)科研討。4、制定好各種教學(xué)、教研工作計劃。5、安排并開展本學(xué)期公開課活動。6、印發(fā)各種表冊。7、對小一新生建檔。8、做好十一長假的作業(yè)布置工作十月1、組織學(xué)習(xí)煙臺市小學(xué)教學(xué)常規(guī)、課程標(biāo)準(zhǔn)的學(xué)習(xí)。2、檢查集體備課情況。3、進行書法、口算、口語表達技能比賽。4、積極準(zhǔn)備上級的專項教學(xué)常規(guī)督導(dǎo)。5、積極打磨XX市學(xué)科優(yōu)質(zhì)課。
一、課堂教學(xué):1、引導(dǎo)階段:師:同學(xué)們上節(jié)課我們學(xué)習(xí)了的第八課《瓢蟲的花衣裳》同學(xué)們表現(xiàn)得很好,連隔壁班的老師都夸獎你們呢!同學(xué)們要繼續(xù)努力。我們知道世界每天都在發(fā)生著不同的變化,每天都會發(fā)生很多有趣的事情。這幾天你發(fā)生了哪些有趣的事情?生:各抒己見,氣氛活躍。師:同學(xué)們都很積極,那我先說一下老師有趣的事情,再請同學(xué)們說說自己的事情好不好呀?
學(xué)生借助對對聯(lián)的賞析,回味杜甫窮年漂泊的一生,體會杜甫作為一個深受儒家思想影響的讀書人,忠君念闕,心系蒼生的偉大情懷。(這一設(shè)計理念源于孟子所云:“誦其文,讀其詩,不知其人,可乎?是以論其世也?!敝苏撌朗氰b賞詩歌的第一步 )(二)研讀課文1、初讀,朗讀吟誦,感知韻律美。要求學(xué)生讀準(zhǔn)字音,讀懂句意,體會律詩的節(jié)奏、押韻的順暢之美。2、再讀,披詞入情,感受感情美。讓學(xué)生用一個字概括這首詩的情感內(nèi)容。(此教學(xué)設(shè)計是從新課標(biāo)要求的文學(xué)作品應(yīng)先整體感知,培養(yǎng)學(xué)生歸納推理的邏輯思維能力出發(fā)進行的設(shè)計。)其答案是一個“悲”字,由此輻射出兩個問題:詩人因何而“悲”?如何寫“悲”?(此問題設(shè)計順勢而出,目的在于培養(yǎng)學(xué)生探究問題的能力。)
【教學(xué)目標(biāo)】根據(jù)課程標(biāo)準(zhǔn)的要求,結(jié)合魯迅雜文的特點以及學(xué)生的實際情況,制定如下目標(biāo):⑴知識與技能目標(biāo):把握文章思路、結(jié)構(gòu)和觀點;揣摩魯迅雜文犀利、幽默、詼諧的語言風(fēng)格。⑵過程與方法目標(biāo):學(xué)習(xí)運用因果論證和比喻論證的寫作手法。⑶情感態(tài)度及價值觀目標(biāo):正確對待中外文化遺產(chǎn),樹立辯證唯物主義和歷史唯物主義的觀點?!窘虒W(xué)重難點】根據(jù)教學(xué)目標(biāo)和學(xué)生實情,確定教學(xué)重點如:學(xué)習(xí)因果論證的寫作方法,體會作者推理的邏輯性;揣摩魯迅雜文犀利、幽默、詼諧的語言風(fēng)格。確定教學(xué)難點如:學(xué)習(xí)掌握比喻論證的方法;明確為什么要實行“拿來主義”,著重認識送去主義的實質(zhì)和危害。二、教學(xué)方法教學(xué)應(yīng)堅持“以學(xué)生為主體”的原則,盡可能發(fā)揮學(xué)生學(xué)習(xí)的能動性和主動性,培養(yǎng)學(xué)生獨立思考的能力,調(diào)動學(xué)生學(xué)習(xí)積極性,因此本文采用“疑問教學(xué)法”相對合適。
一、教學(xué)重難點有效引導(dǎo)學(xué)生反思本人和父母的情感,回想父母對本人的付出,表達對父母的愛,養(yǎng)成感恩父母、好好學(xué)習(xí)的氛圍。二、教學(xué)流程 (1)導(dǎo)入:1.黑板板書:父母愛 愛父母2.導(dǎo)語:同學(xué)們,今天是新學(xué)期開學(xué)的第一天。在父母的關(guān)心下,我們一天天地茁壯生長,今天終于成長為一名四年級小學(xué)生了。今天的課,就以“父母愛愛父母”為主題,開展我們的課堂。
初讀古詩,整體感知?! ?.請同學(xué)們用自己喜歡的方式讀古詩《四時田園雜興》(其三十一)。要求借助拼音學(xué)會生字,把古詩讀正確,讀通順?! ?.指名多個學(xué)生朗讀古詩,師生評議,糾正讀得不準(zhǔn)確的字音。尤其注意讀準(zhǔn)“晝、耘”的讀音。指導(dǎo)讀準(zhǔn)多音字“供”([ gōng ]作動詞時,準(zhǔn)備著東西給需要的人應(yīng)用:供應(yīng)、供給(jǐ)、供求、供需、供銷、提供、供不應(yīng)求。[ góng ]奉獻:供養(yǎng)、供獻、供奉、供佛、供職;祭祀用的東西:供桌、供品、供果、上供;被審問時在法庭上述說事實:招供、口供、供狀、供認、供詞。)在詩中讀四聲?! ?.把古詩反復(fù)多讀幾遍,通過查字典、問同學(xué)、問老師等方式,結(jié)合課文注釋,理解詩句中詞語的意思,用自己的話說說這首詩大體寫了什么。記下不理解的地方和不明白的問題?! ?.學(xué)生自愿舉手發(fā)言,其他同學(xué)進行評議,也可以做補充發(fā)言。全班交流,教師相機引導(dǎo)并小結(jié)。
1、班主任要分析班級學(xué)生的行為和習(xí)慣,制定切實可行的班級安全工作規(guī)章制度?! ?、針對當(dāng)前甲型h1n1現(xiàn)狀,積極在班級宣傳防控措施,張貼相關(guān)知識明白紙,出防控黑板報,監(jiān)督好值日人員的開窗通風(fēng)及消毒工作?! ?、重視安全教育,要經(jīng)常在班內(nèi)回顧總結(jié)安全上存在的隱患,提出引起注意和需改正的要求。
1、走:第一周:向指定方向走,拖(持)物走;第二周:在指定范圍內(nèi)散走;第三周:一個跟著一個走,延圓圈走,模仿動物走;2、跑:第四周:向指定方向跑、持物跑;第五周:延規(guī)定線路跑;第六周:在指定范圍內(nèi)散跑;第七周:在指定范圍內(nèi)追逐跑;第八周:聽口令走跑交替;3、跳:第九周:雙腳向前跳;第十周:雙腳向上跳(頭觸物離頭10—12cm);第十一周:從20—25cm高處往下跳;第十二周:避開中間直線(左右)跳;
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學(xué) 目 標(biāo)知識目標(biāo):1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關(guān)系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對應(yīng) 技能目標(biāo):1、會解一元二次方程 2、會畫二次函數(shù)的圖像 3、能結(jié)合圖像寫出一元二次不等式的解集 情感目標(biāo):體會知識之間的相互關(guān)聯(lián)性,體會數(shù)形結(jié)合思想的重要性教學(xué) 重點 和 難點重點: 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關(guān)系 難點: 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對應(yīng)的部分教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結(jié)合,相關(guān)知識點融會貫通,數(shù)形結(jié)合的思想方法在這有很好的運用。三種情況只要講清楚一種,另外兩種可由學(xué)生自行推出結(jié)論。
(一)導(dǎo)入新課三角形全等的判定中AA S 和ASA對應(yīng)于相似三 角形的判定的判定定理1,SAS對應(yīng)于相似三 角形的判定的判定定理2,那么SSS 對應(yīng)的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學(xué)習(xí)例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習(xí)四、小結(jié)本節(jié)學(xué) 習(xí)了相似三角形的判定定理3,使用時一定要注意它使用的條件.
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時,是一元二次方程,當(dāng)m__________時,是一元一次方程。四、學(xué)習(xí)體會:五、課后作業(yè)
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當(dāng)一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;