一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:
一、自覺(jué)依法納稅(二)我國(guó)稅收“取之于民,用之于民” 1、稅收的含義與基本特征 【學(xué)生活動(dòng)】學(xué)生思考后回答。 【教師活動(dòng)】稅收是國(guó)家為實(shí)現(xiàn)其職能,憑借其政治權(quán)力,依法無(wú)償?shù)厝〉秘?cái)政收入的基本形式。 【教師活動(dòng)】稅收具有強(qiáng)制性、無(wú)償性和固定性的基本特征。[1]強(qiáng)制性:不管你愿意還是不愿意,都必須交稅。[2]無(wú)償性:交了稅,沒(méi)有補(bǔ)償,更不會(huì)返還。[3]固定性:征稅是有標(biāo)準(zhǔn)的,不是無(wú)止境的,按標(biāo)準(zhǔn)收到一定數(shù)量即算完成納稅。 2、稅收的性質(zhì) 【教師活動(dòng)】展示多媒體圖片,觀察稅收性質(zhì)是什么? 【學(xué)生活動(dòng)】分析圖片,稅收的性質(zhì)。 【教師活動(dòng)】每個(gè)人都與稅收緊密地聯(lián)系在一起,我們天天享受到的公共物品,無(wú)不有賴于稅收。接受教育要有學(xué)校,看病要有醫(yī)院,出行要有道路,保障國(guó)家安全要有國(guó)防,防洪、發(fā)電要有水利工程,這些都要依靠國(guó)家的稅收來(lái)為公眾提供公共服務(wù)。 【教師活動(dòng)】播放國(guó)家免費(fèi)為新冠肺炎患者治療的視頻。 【教師活動(dòng)】勞動(dòng)人民是稅收的最終受益者,我國(guó)的稅收是取之于民、用之于民的新型稅收。
1、 談話引入新課六一快到了。小朋友們?cè)诶蠋煹膸ьI(lǐng)下忙著布置自己的教室呢!可是他們遇到了一些數(shù)學(xué)上的問(wèn)題,你能幫他們一快解決嗎?2、教學(xué)例1。(1)、投影出示主題圖引導(dǎo)學(xué)生仔細(xì)觀察。說(shuō)說(shuō)他們遇到了什么問(wèn)題?(2)、引導(dǎo)學(xué)生解決問(wèn)題并列出算式。板書:56÷8(3)、引導(dǎo)學(xué)生得出算式的商。問(wèn):你是怎么計(jì)算的?(想乘算除)(4)、學(xué)生獨(dú)立解決:要是掛7行呢?你能夠解決嗎?學(xué)生說(shuō)出自己的計(jì)算結(jié)果,并把求商的過(guò)程跟大家說(shuō)一說(shuō)。2、 小結(jié):在今天的學(xué)習(xí)中我們不僅幫小朋友們解決了數(shù)學(xué)問(wèn)題,而且還進(jìn)一步學(xué)會(huì)了利用乘法口訣來(lái)求商。在以后的除法中只要大家能夠熟記口訣,就能很快算出除法的商了。
一、創(chuàng)設(shè)情境,導(dǎo)入新課 1、老師有一個(gè)好消息要告訴大家,在動(dòng)物學(xué)校的旁邊開(kāi)了一家超市,森林里的小動(dòng)物們都去那兒購(gòu)物。今天,小熊哥倆正在商店里購(gòu)物呢!你想看看嗎? 2、教師出示情境圖,教師板書課題:小熊購(gòu)物二、自主探究新知 1、解決第(1)個(gè)問(wèn)題“小熊該付多少錢?” 1)“仔細(xì)觀察情境圖,你能發(fā)現(xiàn)哪些數(shù)學(xué)信息?”,教師總結(jié)重要數(shù)學(xué)信息?! ?2)“ 大家看小熊說(shuō)的話,你能提出什么問(wèn)題?” 引出“小熊該付多少錢?”這個(gè)問(wèn)題?! ?3),教師巡視搜集學(xué)生出現(xiàn)的不同做法 4)展示學(xué)生作業(yè),并引導(dǎo)其他學(xué)生質(zhì)疑“第二個(gè)算式是什么意思?”若學(xué)生中不出現(xiàn)第二個(gè)算式,教師引導(dǎo)學(xué)生將兩個(gè)算式合在一起?! ?5)脫式計(jì)算:根據(jù)學(xué)生列出的算式,教師結(jié)合算式指導(dǎo)學(xué)生進(jìn)行脫式計(jì)算,規(guī)范學(xué)生的書寫格式。
1,猜一猜 師:這里有一個(gè)盒子,盒子里有一朵花,誰(shuí)能猜出這朵花是什么顏色的?盒子里的花兒的顏色是確定的,為什么你們會(huì)有那么多不同的答案? ……師:好,老師給一個(gè)提示:紅色和黃色。會(huì)是什么顏色呢?師:要想準(zhǔn)確猜出球的顏色,有一個(gè)統(tǒng)一的答案,怎么辦? 師:滿足你的愿望,第二個(gè)提示:不是紅色的。2、猜球游戲: 小朋友看,老師這里有一個(gè)白色和一個(gè)黃色的乒乓球,現(xiàn)在把它們放到盒子里,我們一起來(lái)玩一個(gè)猜一猜的游戲,好嗎? 師:我摸出其中一個(gè),你猜猜是什么顏色的球呢?師:猜得準(zhǔn)嗎?老師給你們一些提示吧:我摸出的不是黃球,那我摸出的是什么顏色的球?你是怎么猜的?師:那盒子里面的是什么顏色的球呢?你是怎么猜的?小朋友們很聰明,根據(jù)老師的提示能準(zhǔn)確地判斷出球的顏色,這種方法就是我們今天要學(xué)習(xí)的簡(jiǎn)單的推理。
問(wèn)題情景,導(dǎo)入新課1、多媒體課件出示例1主題圖,問(wèn):圖上的小朋友在干什么?你們測(cè)量過(guò)體重嗎?測(cè)量了幾次?讀一年級(jí)剛?cè)雽W(xué)時(shí),你測(cè)量的體重是多少?(學(xué)生自由匯報(bào)各自的體重情況)怎樣才能讓大家一看就明白我們班所有人的體重情況呢?二、活動(dòng)體驗(yàn),探究新知1、電腦出示統(tǒng)計(jì)表(1): 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 師:現(xiàn)在我們就用“正”字記錄法來(lái)統(tǒng)計(jì)一下剛?cè)雽W(xué)時(shí)的體重(集體活動(dòng))2、活動(dòng)結(jié)束后,師生共同將收集的數(shù)據(jù)整理后填入表格中。3、二年級(jí)時(shí),我們的體重有什么變化呢? 電腦出示統(tǒng)計(jì)表(2) 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 集體進(jìn)行統(tǒng)計(jì)活動(dòng),并將結(jié)果填入表中。4、討論:如果想把兩年的體重?cái)?shù)據(jù)填入一個(gè)統(tǒng)計(jì)表中,該如何表示呢? 學(xué)生討論后,在黑板上出示表格(3):(單位:千克)
解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對(duì)應(yīng)的x值,即15時(shí),A對(duì);溫度最低應(yīng)找到圖象的最低點(diǎn)所對(duì)應(yīng)的x值,即3時(shí),B對(duì);這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對(duì).故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對(duì)應(yīng)值.三、板書設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢(shì),可通過(guò)圖象來(lái)研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來(lái),完成對(duì)該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對(duì)學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解1:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x°則 因?yàn)閚為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因?yàn)?,所以 解2:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個(gè)n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個(gè)頂點(diǎn)可以畫7條對(duì)角線,則這個(gè)n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個(gè)多邊形的各個(gè)內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計(jì)一個(gè)內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實(shí)現(xiàn)。(填“能”與“不能”)6. 如圖4,要測(cè)量A、B兩點(diǎn)間距離,在O點(diǎn)打樁,取OA的中點(diǎn) C,OB的中點(diǎn)D,測(cè)得CD=30米,則AB=______米.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì)定理角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的判定定理在一個(gè)角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問(wèn)題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練.
解:設(shè)另一個(gè)因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個(gè)因式為2x2+x-3.方法總結(jié):因?yàn)檎降某朔ê头纸庖蚴交槟孢\(yùn)算,所以分解因式后的兩個(gè)因式的乘積一定等于原來(lái)的多項(xiàng)式.三、板書設(shè)計(jì)1.因式分解的概念把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運(yùn)算.本課是通過(guò)對(duì)比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過(guò)對(duì)比學(xué)習(xí)加深對(duì)新知識(shí)的理解.教學(xué)時(shí)采用新課探究的形式,鼓勵(lì)學(xué)生參與到課堂教學(xué)中,以興趣帶動(dòng)學(xué)習(xí),提高課堂學(xué)習(xí)效率.
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問(wèn)題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問(wèn)題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問(wèn)題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過(guò)實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問(wèn)題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
1、復(fù)習(xí)萬(wàn)以內(nèi)數(shù)的認(rèn)識(shí)。 請(qǐng)同學(xué)們先來(lái)回憶一下,我們學(xué)了萬(wàn)以內(nèi)數(shù)的哪些知識(shí)? 回憶學(xué)了萬(wàn)以內(nèi)數(shù)的數(shù)數(shù)、讀數(shù)、寫數(shù)、數(shù)的組成、數(shù)位的含義、數(shù)的順序和大小比較、近似數(shù)以及整百、整千數(shù)的加減法……2、下面先請(qǐng)大家獨(dú)立做教材第3題,然后集體訂正。 指名讓學(xué)生說(shuō)一說(shuō)是怎么做的?3、寫一寫,再讀一讀。① 千位上是2個(gè)千、百位上是5個(gè)百、個(gè)位上是6個(gè)一。② 二千五百零六。4、 下面復(fù)習(xí)用計(jì)數(shù)單位表示數(shù),獨(dú)立完成書上第4題,想一想是怎樣做出來(lái)的。5、 復(fù)習(xí)近似數(shù)。請(qǐng)同學(xué)們看教材第5題,找出這段文字中哪些數(shù)是近似數(shù)?并畫出來(lái)。再請(qǐng)同學(xué)回答。
1、拿出一本數(shù)學(xué)教課書,和一只筆,提問(wèn):哪個(gè)重有些?2、肯定學(xué)生的回答,并讓學(xué)生“掂一掂”,然后讓學(xué)生說(shuō)說(shuō)有什么樣的感覺(jué)。3、從剛才的實(shí)踐得出結(jié)論:物體有輕有重。板書課題。二、觀察、操作領(lǐng)悟新知1、出示主題掛圖,物體的輕重的計(jì)量。觀察主題掛圖。(1、)請(qǐng)同學(xué)們觀察一下,這幅圖畫的是什么?(2、)這幅圖中的小朋友和阿姨在說(shuō)什么?(3、)前幾天,老師讓大家廣泛收集、調(diào)查我們?nèi)粘I钪谐R?jiàn)物品的質(zhì)量,我們現(xiàn)在來(lái)交流以下好嗎?表示物品有多重,可以用克和千克單位來(lái)表示。(4、)在學(xué)生說(shuō)的同時(shí),老師拿出有準(zhǔn)備的東西展示。
已知一水壩的橫斷面是梯形ABCD,下底BC長(zhǎng)14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長(zhǎng)為46m,求它的上底的長(zhǎng)(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過(guò)點(diǎn)A作AE⊥BC于E,過(guò)點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過(guò)點(diǎn)A作AE⊥BC,過(guò)點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長(zhǎng)約為3.1m.方法總結(jié):考查對(duì)坡度的理解及梯形的性質(zhì)的掌握情況.解決問(wèn)題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
方法總結(jié):判斷軸對(duì)稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對(duì)稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對(duì)稱?解析:根據(jù)軸對(duì)稱的意義,經(jīng)過(guò)翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對(duì)稱.解:(4)(5)(6).方法總結(jié):動(dòng)手操作或結(jié)合軸對(duì)稱的概念展開(kāi)想象,在腦海中嘗試完成一個(gè)動(dòng)態(tài)的折疊過(guò)程,從而得到結(jié)論.三、板書設(shè)計(jì)1.軸對(duì)稱圖形的定義2.對(duì)稱軸3.兩個(gè)圖形成軸對(duì)稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動(dòng)向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識(shí),獨(dú)立獲取知識(shí)和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關(guān)系:現(xiàn)在已存有55元,計(jì)劃從現(xiàn)在起以后每個(gè)月節(jié)省20元.若此學(xué)生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關(guān)系時(shí),要找準(zhǔn)題中表示不等關(guān)系的兩個(gè)量,并用代數(shù)式表示;正確理解題中的關(guān)鍵詞,如負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過(guò)、至少、至多等的含義.三、板書設(shè)計(jì)1.不等式的概念2.列不等式(1)找準(zhǔn)題目中不等關(guān)系的兩個(gè)量,并且用代數(shù)式表示;(2)正確理解題目中的關(guān)鍵詞語(yǔ)的確切含義;(3)用與題意符合的不等號(hào)將表示不等關(guān)系的兩個(gè)量的代數(shù)式連接起來(lái);(4)要正確理解常見(jiàn)不等式基本語(yǔ)言的含義.本節(jié)課通過(guò)實(shí)際問(wèn)題引入不等式,并用不等式表示數(shù)量關(guān)系.要注意常用的關(guān)鍵詞的含義:負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過(guò),這些關(guān)鍵詞中如果含有“不”“非”等文字,一般應(yīng)包括“=”,這也是學(xué)生容易出錯(cuò)的地方.