系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.
授課 日期 班級16高造價 課題: §6.3等比數(shù)列 教學目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項公式; 3.掌握等比數(shù)列前 n 項和公式及推導過程,能用公式求相關參數(shù); 教學重點、難點:運用等比數(shù)列的通項公式求相關參數(shù) 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》 授課執(zhí)行情況及分析: 板書設計或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學生板書區(qū)) 2. 等比數(shù)列的通項公式 3.等比數(shù)列的求和公式
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(二) *創(chuàng)設情境 興趣導入 【問題】 平面內兩條既不重合又不平行的直線肯定相交.如何求交點的坐標呢? 圖8-12 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點,既在上,又在上.所以的坐標是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點的坐標. 觀察圖8-13,直線、相交于點P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領 學生 分析 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結各點,得到函數(shù)在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關系呢? c 圖1-7 當三角形為鈍角三角形時,不妨設角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標系,則 兩邊取與單位向量的數(shù)量積,得 由于設與角A,B,C相對應的邊長分別為a,b,c,故 即 所以 同理可得 即 當三角形為銳角三角形時,同樣可以得到這個結論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細分析講解 總結 歸納 詳細分析講解 思考 理解 記憶 理解 記憶 帶領 學生 總結 20
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上海→北京,上?!貞c. 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20
一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).
重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別
課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件
【課堂小結】本課主要講述俄國十月革命后進行經濟建設,并在建設中進行社會主義探索,期間先后出現(xiàn)了戰(zhàn)時共產主義政策、新經濟政策和斯大林模式,這些政策和體制的產生都是歷史和當時現(xiàn)實有關,但也反映出在建設社會主義中既有成功的也由重大失誤,主要在于缺乏現(xiàn)成的政策和模式可供借鑒,更在于理論上的缺乏。斯大林模式的形成同蘇聯(lián)當時社會生產力的發(fā)展水平相適應,它在初期和戰(zhàn)爭時期曾發(fā)揮了巨大作用,使蘇聯(lián)成為強大的社會主義國家。它建立的高度集中的計劃經濟體制和新型的工業(yè)化模式是蘇聯(lián)進行社會主義建設中的探索和創(chuàng)新,對二戰(zhàn)后社會主義國家產生了深刻影響,促進這些國家國民經濟的恢復和發(fā)展,形成了足以同資本主義相抗衡的社會主義陣營。但是,它沒有解決社會主義民主政治建設和經濟運行的一系列根本問題,違背了列寧關于把文化經濟建設當作工作重心的指示,仍把政治斗爭放在第一位。
5、弊端:(1)經濟發(fā)展不均衡,片面發(fā)展重工業(yè),使輕工業(yè)和農業(yè)長期處于落后狀態(tài);(2)對農民的剝奪太重,挫傷了農民的生產積極性;(3)長期執(zhí)行指令性計劃嚴重削弱了企業(yè)的生產自主權,不利于發(fā)揮企業(yè)的生產積極性,制約了蘇聯(lián)經濟的可持續(xù)發(fā)展。(4)計劃經濟體制確立后,沒有隨著社會的變化進行調整,二戰(zhàn)后逐漸僵化,喪失了自我完善的功能,成為蘇聯(lián)解體的重要因素?!竞献魈骄俊克勾罅帜J降脑u價及經驗教訓:積極:①使蘇聯(lián)迅速實現(xiàn)了 工業(yè)化②蘇聯(lián)經濟實力的迅速增長,為反法西斯戰(zhàn)爭的勝利奠定了 物質基礎 。消極:①政治:高度集權,破壞了 民主與法制 ; ②經濟:優(yōu)先發(fā)展重工業(yè)使 農業(yè)和輕工業(yè)長期處于落后狀態(tài),農民生產積極性不高;計劃指令,壓制了地方和企業(yè)的積極性,阻礙蘇聯(lián)經濟的發(fā)展高度集中的計劃經濟體制,成為東歐劇變和蘇聯(lián)解體的重要原因。
二、流動鑲嵌模型的基本內容1、膜的成分2、膜的基本支架3、膜的結構特點4、膜的功能特性設計意圖:我根據(jù)板書的“規(guī)范、工整和美觀”的要求,結合所教的內容,設計了如圖所示的板書,使學生對本節(jié)課有一個整體的思路。八、教學反思:本節(jié)課我創(chuàng)設了問題情境來引導學生主動學習,利用了多媒體信息技術激發(fā)學生的學習熱情,調動了學生的積極性,成功實現(xiàn)預期的教學目標。體現(xiàn)了學生為主體地位的新課程理念。啟發(fā)式、探究式的教學方法以及由教師指導下的學生自主閱讀、合作交流的學習方法把學生從死記知識的苦海中解救出來。初次的嘗試還存在一定的缺陷,學生不能夠很好的把知識和習題聯(lián)系,只是把他所知道的知識簡單羅列,不能夠體現(xiàn)出能力的訓練。在上課中發(fā)現(xiàn)學生比較靦腆或拘束,聲音比較小,表達不能到位。盡管本節(jié)課存在諸多不足之處,但是也讓我看到了閃光點:學生比較歡迎這樣一堂自己是主角的課堂。
(一)教材的地位與作用教材第一部分的順序是:先給學生洋流的概念以及洋流按照性質的分類,接著說明洋流的主要成因與盛行風有關。并結合風帶與洋流模式圖總結和歸納了洋流的分布規(guī)律。最后,給出世界表層洋流的冬季分布圖,讓學生讀圖思考的問題主要涉及洋流的分布規(guī)律和原因。教材第二部分闡述了洋流對地理環(huán)境四個方面的影響。教材的順序和要求與課標要求、學生認知規(guī)律有矛盾的地方,需要重組教學的順序——先由洋流對地理環(huán)境和人類活動的影響的例子來設置懸念,激發(fā)學生認識的欲望,提供材料歸納世界表層洋流的分布規(guī)律,再探究其主要驅動力。(二)教學目標(1)知識與技能目標:①運用地圖,從分布位置、運動方向、寒暖流的位置來歸納世界表層洋流的分布規(guī)律②畫出世界表層洋流的分布簡單模式圖③掌握洋流的主要成因
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結果;4.數(shù)據(jù)分析:把數(shù)學結果轉譯成具體問題的結論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構造與對數(shù)據(jù)的處理.
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;
1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經驗確定非線性經驗回歸方程的模型;3.通過變換,將非線性經驗回歸模型轉化為線性經驗回歸模型;4.按照公式計算經驗回歸方程中的參數(shù),得到經驗回歸方程;5.消去新元,得到非線性經驗回歸方程;6.得出結果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產卵數(shù)y與一定范圍內的溫度x有關,現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產卵數(shù).(結果取整數(shù)).