探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內無水).在這三個過程中,洗衣機內的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關系的圖象大致為()解析:∵洗衣機工作前洗衣機內無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結:本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設計函數(shù)定義:自變量、因變量、常量函數(shù)的關系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.
本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內容通過學生的生活經驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結:有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分數(shù)形式,而無理數(shù)則不能.探究點二:借助計算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產品的質量檔次為第6檔.方法總結:解決此類問題的關鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構,在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
議一議數(shù)軸上的兩個點,右邊點表示的數(shù)與左邊點表示的數(shù)有怎樣的大小關系?數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負數(shù)▁▁▁0,正數(shù)▁▁▁負數(shù)。練習:比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數(shù)軸?怎樣畫數(shù)軸。(2) 有理數(shù)與數(shù)軸上的點之間存在怎樣的關系?(3) 什么是相反數(shù)?怎樣求一個數(shù)的相反數(shù)?(4) 如何利用數(shù)軸比較有理數(shù)的大???5、隨堂練習:(1)下列說法正確的是( ) A、 數(shù)軸上的點只能表示有理數(shù)B、 一個數(shù)只能用數(shù)軸上的一個點表示C、 在1和3之間只有2D、 在數(shù)軸上離原點2個單位長度的點表示的數(shù)是2 (2)語句:①-5是相反數(shù)?②-5與+3互為相反數(shù)③-5是5的相反數(shù)④-5和5互為相反數(shù)⑤0的相反數(shù)是0⑥-0=0。上述說法中正確的是( )
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號連接各數(shù).解析:利用數(shù)軸上的點來表示相應的數(shù),再利用它們對應點的位置來判斷各數(shù)的大小.解:如圖:由數(shù)軸可知-212<-2<0<+1<314.方法總結:一般地,數(shù)軸上多個數(shù)的大小比較,可利用“數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大”這一性質進行比較.探究點四:點在數(shù)軸上的移動問題點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長度到點B時,點B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數(shù)軸上表示-2的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為2.故選C.方法總結:點A在數(shù)軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達式;(2)根據(jù)表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結、提高。(結合板書小結)今天通過生活中的例子,探索學習了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式沒意義);③當 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應 的任意一對對應值的積來求得,只要k確定了,這個函數(shù)就確定了。
【活動準備】 1.創(chuàng)設“鐘表展覽館”的教學環(huán)境。 2.人手一只可以撥動的小時鐘。 3.反映幼兒一日生活內容的圖片(起床、上學、午飯、午睡等),時鐘演變過程圖片。 4.可以用來自制鐘面的有關材料(如長短針、1~12的數(shù)字、各種形狀和造型的硬板紙或吹塑紙若干)?!净顒舆^程】一、創(chuàng)設嘗試情境,激發(fā)幼兒嘗試欲望 邊聽“在鐘表店”里的音樂,邊把幼兒帶進“鐘表展覽館”,引導幼兒欣賞各種各樣的鐘表,激發(fā)幼兒學習的興趣。 師:請小朋友仔細看看、找找、比比這些鐘表有什么地方是相同的?再想想,工人叔叔和阿姨為什么要設計、制造這些鐘表? 二、觀察活動 通過觀察活動比較鐘表上時針、分針的不同,認識12個數(shù)字以及數(shù)字的排列位置。 提問: 1.每只鐘面上都有什么?(出示3只不同形狀的時鐘,幼兒找出鐘面上都有兩根針和1~12的數(shù)字) 2.比比看,兩根針什么地方不一樣?(長短、粗細之分)它們的名稱叫什么?(了解時針、分針的名稱) 3.鐘面上的數(shù)字排列位置是怎樣的?(認識典型的幾個數(shù)字位置12、9、3、6)
一、教學目標(一)知識教育點使學生掌握拋物線的定義、拋物線的標準方程及其推導過程.(二)能力訓練點要求學生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉化等方面的能力.(三)學科滲透點通過一個簡單實驗引入拋物線的定義,可以對學生進行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標準方程.2.難點:拋物線的標準方程的推導.三、活動設計提問、回顧、實驗、講解、板演、歸納表格.四、教學過程(一)導出課題我們已學習了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學習第四種圓錐曲線——拋物線,以及它的定義和標準方程.課題是“拋物線及其標準方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。
教學準備 1. 教學目標 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標準方程形式及其對應的焦點、準線.過程與方法掌握對雙曲線標準方程的推導,進一步理解求曲線方程的方法——坐標法.通過本節(jié)課的學習,提高學生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學習,體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現(xiàn)實和解決實際問題中的作用,進一步體會數(shù)形結合的思想.2. 教學重點/難點 教學重點雙曲線的定義及焦點及雙曲線標準方程.教學難點在推導雙曲線標準方程的過程中,如何選擇適當?shù)淖鴺讼担?3. 教學用具 多媒體4. 標簽
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 8.4 圓(二) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內直線與圓的位置關系有三種(如圖8-21): (1)相離:無交點; (2)相切:僅有一個交點; (3)相交:有兩個交點. 并且知道,直線與圓的位置關系,可以由圓心到直線的距離d與半徑r的關系來判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說明 質疑 引導 分析 了解 思考 思考 帶領 學生 分析 啟發(fā) 學生思考 0 15*動腦思考 探索新知 【新知識】 設圓的標準方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關系. 講解 說明 引領 分析 思考 理解 帶領 學生 分析 30*鞏固知識 典型例題 【知識鞏固】 例6 判斷下列各直線與圓的位置關系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標準方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關系的其他方法? *例7 過點作圓的切線,試求切線方程. 分析 求切線方程的關鍵是求出切線的斜率.可以利用原點到切線的距離等于半徑的條件來確定. 解 設所求切線的斜率為,則切線方程為 , 即 . 圓的標準方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問題中有著廣泛的應用. 【想一想】 能否利用“切線垂直于過切點的半徑”的幾何性質求出切線方程? 說明 強調 引領 講解 說明 引領 講解 說明 觀察 思考 主動 求解 思考 主動 求解 通過例題進一步領會 注意 觀察 學生 是否 理解 知識 點 50
本人所教的兩個班級學生普遍存在著數(shù)學科基礎知識較為薄弱,計算能力較差,綜合能力不強,對數(shù)學學習有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識到自己的不足,對數(shù)學課的學習興趣高,積極性強。 學生在學習交往上表現(xiàn)為個別化學習,課堂上較為依賴老師的引導。學生的群體性小組交流能力與協(xié)同討論學習的能力不強,對學習資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學中盡量分析細致,減少跨度較大的環(huán)節(jié),對重要的推導過程采用板書方式逐步進行,力求讓絕大多數(shù)學生接受。 1.理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據(jù)條件求橢圓的標準方程,會根據(jù)橢圓的標準方程求焦點坐標. 2.通過橢圓圖形的研究和標準方程的討論,使學生掌握橢圓的幾何性質,能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用。 1.讓學生經歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數(shù)形結合等數(shù)學思想;培養(yǎng)學生運用類比、聯(lián)想等方法提出問題. 2.培養(yǎng)學生運用數(shù)形結合的思想,進一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質的對比來提高學生聯(lián)想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數(shù)學的對稱美、簡潔美,培養(yǎng)學生的審美情趣,形成學習數(shù)學知識的積極態(tài)度. 2.進一步理解并掌握代數(shù)知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數(shù)”研究“形”,說明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過“數(shù)”的變化研究“形”的本質。幫助學生建立勇于探索創(chuàng)新的精神和克服困難的信心。
探究點三:作中心對稱圖形如圖,網格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調學生自主探索和合作交流,結合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
教學時間:教學準備:小黑板,掛圖。教學過程:一、復習舊知,引入新課。1、請大家想一想到今天為止,我們已經復習了本學期學過的哪些知識?(表內除法。萬以內數(shù)的認識和加法、減法。克和千克及圖形的變換。)2、對這些知識還有沒有什么問題?還有沒有內容是我們沒有復習到或復習了掌握不好的?如果學生有問題,則針對問題,讓同學們一起來想辦法解決這些問題。學生提出問題,思考解決方法。二、復習整理:1、分別出示教材第122頁第13、14題的掛圖。(如果沒有,就讓學生直接看書)(1)看了圖后,你明白圖中的畫是什么意思嗎?學生看掛圖,小組討論這兩題的意思。敘述兩幅圖的意思,沒有說好的請其他同學來補充完整。在小組內討論交流。(2)怎樣來解決這兩個生活中的實際問題?
【新知識點】認識扇形統(tǒng)計圖統(tǒng)計填寫扇形統(tǒng)計圖根據(jù)扇形統(tǒng)計圖所提供的數(shù)據(jù)回答問題【單元教學目標】1,認識扇形統(tǒng)計圖,了解扇形統(tǒng)計圖的特點.2,能夠看懂并會填扇形統(tǒng)計圖.3,會根據(jù)扇形統(tǒng)計圖所提供的數(shù)據(jù)回答一些簡單的問題.4,進一步了解統(tǒng)計在實際生活中的地位和作用.5,通過對相關素材的整理和分析,使學生受到一定的思想教育.【單元教學重難點】重點:學生掌握扇形統(tǒng)計圖的特點和作用.難點:在學習中體會各種統(tǒng)計圖的不同特點.【教學建議】學生已經系統(tǒng)地學習過有關條形統(tǒng)計圖和折線統(tǒng)計圖的知識,也初步認識了扇形,而且也學習了有關百分數(shù)的知識,所有這些都為學校繼續(xù)學習統(tǒng)計圖的最后一部分內容——扇形統(tǒng)計圖打下了良好的基礎.【課時安排】
教學目標1、認識長度單位毫米,建立1毫米的長度概念,會用毫米厘米度量比較短的物體的長度。2、培養(yǎng)學生的估測意識和能3、培養(yǎng)學生的動手實踐和合作學習的能力,并感受生活中處處有數(shù)學。教學重點:認識長度單位毫米,會用毫米度量物體長度。教學難點:培養(yǎng)學生的估測方法。教學過程一、引言二、估測數(shù)學書的長、寬、厚的長度。師:請同學們觀察數(shù)學書的長、寬、厚,并估一估大約有多長,然后把估測的結果填入下表?估計實際測量數(shù)學書的長數(shù)學書的寬數(shù)學書的厚生1:數(shù)學書的長大約是21厘米、寬大約是14厘米、厚有1厘米。師:你是怎么想的?生1:因為1厘米大約有一個指甲長那么長,數(shù)學書的長大約就有21個指甲長那么長,數(shù)學書的寬有14個指甲長那么長,數(shù)學書的厚有1個指甲長那么厚。
教學追記:本堂課,在我?guī)ьI著學生利用教具進行操作,在此基礎上,讓學生自主發(fā)現(xiàn)圓的面積與拼成長方形面積的關系,圓的周長、半徑和長方形的長、寬的關系,并推導出圓的面積計算公式。教學環(huán)形的面積計算時,我充分放手給學生,讓學生通過思考討論領悟出求環(huán)形的面積是用外圓面積減去內圓面積,并引導他們發(fā)現(xiàn)這兩種算法的一致性,同時提醒學生盡量使用簡便算法,減少計算量。圓的周長和面積的練習課教學目標:1、通過教學使學生理解并掌握圓的周長和面積計算方法。2、培養(yǎng)學生分析問題和解決問題的能力,發(fā)展學生的空間觀念。3、靈活解答幾何圖形問題。教學重點:認真審題,分辨求周長或求面積。教學過程:一、復習。1、求出下面圓的周長和面積并用彩筆描出周長,用陰影表示出面積。
4.操作。(“做一做”第2題) 全班同學動手操作,1名同學到投影儀上操作。 (1)第1行擺5個△,在△下面擺○,△要比○多1個。第2行擺幾個○? (2)第1行擺4朵紅花,擺的黃花比紅花少1朵,第2行擺幾朵黃花? 二、運用新知 教科書練習一第1~4題。 1.第1題:左圖是猴子多,右圖是骨頭多。(避免學生產生思維定勢) 2.第2題:學生觀察,看到公雞和鴨子雖然擺的一樣長,但疏密不同,進而判斷擺的密的鴨子的只數(shù)多些,而公雞只數(shù)少些。 3.第3題:學生在觀察到第一排蛋糕同樣多的基礎上,只需比較兩盒中的第二排。第二排多的就多些,反之,就少些。 4.第4題:此題是在同一排中比較多少,當?shù)?次循環(huán)出現(xiàn)珠子時,只出現(xiàn)了一個黃色珠子,所以黃珠子多而紅珠子少。 三、總結 教師:今天我們學習了“比一比”,知道在比較時,一定要一個對著一個比,就會得到正確的結果。
教學目標:1、會用多得多、少得多、多一些、少一些等詞語形象地描述兩個100以內的數(shù)之間的大小關系,培養(yǎng)學生的數(shù)感和語言表達能力。2、在觀察、比較的過程中,逐步發(fā)展估計意識和簡單的推理能力。3、在觀察、操作、討論、交流的小組式的學習過程中激發(fā)學生的學習興趣,培養(yǎng)合作意識和主動探求知識的能力,從而感知數(shù)學無處不在。教學重點:理解多一些、多得多、少一些、少得多的相對性含義,并能夠用準確地語言進行表述。教學難點:相對性的理解并能進行正確地表述。教學過程:一、復習舊知。在O里填上>、<或=。63O7558O5898O10056O65先填空再說出比較方法。(復習舊知。)