探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設(shè)計1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.
四、教學(xué)設(shè)計反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應(yīng)關(guān)系有點陌生.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對函數(shù)與圖象的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動中,鼓勵學(xué)生積極思考,提高學(xué)生解決實際問題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應(yīng)的圖形具有什么特征呢?
解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標(biāo)為(-53,-3).三、板書設(shè)計反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時,兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時,兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點、連線(描點法)通過學(xué)生自己動手列表、描點、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.
觀察 和 的圖象,它們有什么相同點和不同點?學(xué)生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內(nèi)?對于函數(shù) ,兩支曲線又分別位于哪個象限內(nèi)?怎樣區(qū)別這兩個函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時,它的圖像位于一、三象限內(nèi),當(dāng)k<0時,它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。
師:同學(xué)們,在四年級的時候,我們已經(jīng)了解了圖形的密鋪,請你說一說,什么是圖形的密鋪?(沒有重疊、沒有空隙地鋪在平面上,就是密鋪。)師:圖形的密鋪又可以叫做鑲嵌,以上四個圖片,都是由哪些基本圖形密鋪(鑲嵌)而成的呢?(請學(xué)生邊指邊說。)師:還有哪些圖形也可以鑲嵌?(學(xué)生可能回答:三角形,平行四邊形,梯形,菱形,正六邊形,……)師:今天就請你發(fā)揮一下想象力,設(shè)計一些與眾不同的鑲嵌圖形。[設(shè)計意圖說明:學(xué)生在四年級已經(jīng)初步了解了圖形的密鋪(鑲嵌)現(xiàn)象,四幅圖片是四年級下冊教材《三角形》單元中《密鋪》內(nèi)容中的原圖。本單元在此基礎(chǔ)上,通過數(shù)學(xué)游戲拓展鑲嵌圖形的范圍,讓學(xué)生用圖形變換設(shè)計鑲嵌圖案,進(jìn)一步感受圖形變換帶來的美感以及在生活中的應(yīng)用。]二、新授探究一:利用平移變換設(shè)計鑲嵌圖形
6. 本題是一道實際應(yīng)用的題,可以結(jié)合生活實際舉例,在舉例中進(jìn)一步認(rèn)識分?jǐn)?shù)。7. (讀作八分之一)表示把人的身高看作單位“1”,頭部的高度占整個身高的 ; (讀作五分之三)表示把整個長江的干流看作單位“1”,受污染的部分占整個長江干流的 ; (讀作十分之三)表示把死海表層的水看作單位“1”,含鹽量占死海表層水的 。8. 讀作六分之一, 讀作七分之二, 讀作是十五分之四, 讀作十八分之十一, 讀作一百分之七。它們的分?jǐn)?shù)單位分別是: 、 、 、 、 。9. 本題有兩個知識點:一是根據(jù)分?jǐn)?shù)的意義涂色,是把12個蘋果平均分成了2份,1份有6個蘋果; 是把12個蘋果平均分成了3份,1份有4個蘋果; 是把12個蘋果平均分成了4份,1份有3個蘋果; 是把12個蘋果平均分成了6份,1份有2個蘋果; 是把12個蘋果平均分成了12份,1份有1個蘋果。二是在涂色中感受平均分成的份數(shù)越多,每一份越少,也可以說隨著分母的增大,幾分之一所表示的蘋果個數(shù),從 的6個到 的1個,相應(yīng)地在減少。
二、 教學(xué)目標(biāo)1.理解分?jǐn)?shù)加減法的算理,掌握分?jǐn)?shù)加減法的計算方法,并能正確地計算出結(jié)果。2.理解整數(shù)加法的運(yùn)算定律對分?jǐn)?shù)加法仍然適用,并會運(yùn)用這些運(yùn)算定律進(jìn)行一些分?jǐn)?shù)加法的簡便運(yùn)算,進(jìn)一步提高簡算能力。 3.體會分?jǐn)?shù)加減運(yùn)算在生活、生產(chǎn)中的廣泛應(yīng)用。三、學(xué)情分析五年級的學(xué)生已有一定的生活經(jīng)驗,對數(shù)學(xué)的神秘感有了更強(qiáng)的好奇心。因此,結(jié)合分?jǐn)?shù)加減的學(xué)習(xí)內(nèi)容適當(dāng)補(bǔ)充一些數(shù)學(xué)史料,可使學(xué)生的好奇轉(zhuǎn)化為探究欲,促其學(xué)習(xí)數(shù)學(xué)興趣的提高,并逐步形成良好的探究習(xí)慣。因此,教學(xué)時,應(yīng)重視教材提供的兩個涉及數(shù)學(xué)文化的閱讀材料的學(xué)習(xí)。在此基礎(chǔ)上,再補(bǔ)充一些相關(guān)的學(xué)習(xí)材料。四、教學(xué)重點、難點重點:分?jǐn)?shù)加減法的計算方法難點:引導(dǎo)學(xué)生體會理解不同算法的思路。
1、完成P78“做一做”第二題:讀出下面的分?jǐn)?shù)。2、完成P78“做一做”第一題:直接在書上的橫線上寫出對應(yīng)的百分?jǐn)?shù)。3、P79練習(xí)十九第4題:讀出或?qū)懗鰣髾谥械陌俜謹(jǐn)?shù)。4、“做一做”第四題:學(xué)生根據(jù)自己的理解,說說分?jǐn)?shù)和百分?jǐn)?shù)在意義上有何不同。四、布置作業(yè)練習(xí)十九第1~3題。教學(xué)追記:本堂課,我從三個層次入手。第一層:聯(lián)系生活實際引出百分?jǐn)?shù);第二層:理解百分?jǐn)?shù)的具體含義;第三層:教學(xué)百分?jǐn)?shù)的讀寫。三個層次,思路清晰,教學(xué)層次明顯。其中,我把教學(xué)重點放在理解百分?jǐn)?shù)的具體含義上,并及時與分?jǐn)?shù)做了比較,教學(xué)結(jié)構(gòu)較為嚴(yán)謹(jǐn)。2、百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)的互化教學(xué)目標(biāo):1、使學(xué)生理解并掌握百分?jǐn)?shù)和小數(shù)互化的方法,能正確地把分?jǐn)?shù)、小數(shù)化成百分?jǐn)?shù)或把百分?jǐn)?shù)化成分?jǐn)?shù)、小數(shù)。2、在計算、比較,分析、探索百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)互化的規(guī)律的過程中,發(fā)展學(xué)生的抽象概括能力。3、通過探索百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)互化的規(guī)律,激發(fā)學(xué)生的數(shù)學(xué)探索意識。
3、教學(xué)例3(1)讀題理解題意后,提出“嬰兒每分鐘心跳的次數(shù)比青少年多 ”表示什么意思?(組織學(xué)生討論,說說自己的理解)(2)引導(dǎo)學(xué)生將句子轉(zhuǎn)化為“嬰兒每分鐘比青少年多跳的次數(shù)是青少年每分鐘心跳次數(shù)的 ”。著重讓學(xué)生說說誰與誰比,把誰看作單位“1”。(3)出示線段圖,學(xué)生討論交流,結(jié)合例2的解題方法,學(xué)生獨立列式計算后全班交流兩種解題方法。解法一:75+75× =75+60=135(次)解法二:75×(1+ )=75× =135(次)4、鞏固練習(xí):P21“做一做”(列式后讓學(xué)生說說算式各部分表示什么)三、練習(xí)1、練習(xí)五第2、3題:引導(dǎo)學(xué)生抓住題目中關(guān)鍵句子分析,找到誰與誰比,誰是表示單位“1”的量。2、練習(xí)五第3、4題:學(xué)生依據(jù)例題引導(dǎo)的解題方法,獨立完成3、4題。四、布置作業(yè)練習(xí)五第7、8、9、10題。
教學(xué)追記:本節(jié)課的內(nèi)容相對而言較容易掌握,因而學(xué)生在學(xué)習(xí)中并沒有出現(xiàn)什么困難。教學(xué)中,我兩種方法并重,并讓學(xué)生理解兩種方法的殊途同歸之處。對于類型稍有不同的題目,如“做一做”第2題,以人數(shù)為比例進(jìn)行分配的,我在教學(xué)時添加了一道例題,教學(xué)后再讓學(xué)生獨力完成第2題,這樣的教學(xué)讓學(xué)生學(xué)得較為輕松,也對這種類型題掌握得較扎實。4、整理和復(fù)習(xí)整理復(fù)習(xí)(1)復(fù)習(xí)目標(biāo):使學(xué)生進(jìn)一步掌握本章所學(xué)的基本概念和計算法則,提高學(xué)生的計算能力和解題能力。復(fù)習(xí)重點:分?jǐn)?shù)除法的計算方法,化簡比。復(fù)習(xí)難點:正確計算分?jǐn)?shù)除法。復(fù)習(xí)過程:一、復(fù)習(xí)分?jǐn)?shù)除法的意義和計算法則1、這一章我們學(xué)習(xí)了分?jǐn)?shù)除法的有關(guān)知識.請大家回憶一下分?jǐn)?shù)除法有幾種類型?(1)分?jǐn)?shù)除以整數(shù),例如 ÷5;(2)一個數(shù)除以分?jǐn)?shù),它又包括整數(shù)除以分?jǐn)?shù),例如20÷ ;和分?jǐn)?shù)除以分?jǐn)?shù),例如÷ 。(3)做第52頁“整理和復(fù)習(xí)”的第2題。2、分?jǐn)?shù)除法的意義
(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學(xué)生,估計該年級在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計圖中對應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補(bǔ)充互相利用.例如求被抽查的學(xué)生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對應(yīng)的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進(jìn)一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進(jìn)一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
教學(xué)目標(biāo): 1.理解、掌握梯形面積的計算公式,并能運(yùn)用公式正確計算梯形的面積。2.發(fā)展學(xué)生空間觀念。培養(yǎng)抽象、概括和解決實際問題的能力。3.掌握“轉(zhuǎn)化”的思想和方法,進(jìn)一步明白事物之間是相互聯(lián)系,可以轉(zhuǎn)化的。教學(xué)重點:理解、掌握梯形面積的計算公式。教學(xué)難點:理解梯形面積公式的推導(dǎo)過程。教學(xué)過程:1.導(dǎo)入新課(1)投影出示一個三角形,提問:這是一個三角形,怎樣求它的面積?三角形面積計算公式是怎樣推導(dǎo)得到的?學(xué)生回答后,指名學(xué)生操作演示轉(zhuǎn)化的方法。(2)展示臺出示梯形,讓學(xué)生說出它的上底、下底和各是多少厘米。(3)教師導(dǎo)語:我們已學(xué)會了用轉(zhuǎn)化的方法推導(dǎo)三角形面積的計算公式,那怎樣計算梯形的面積呢?這節(jié)課我們就來解決這個問題。(板書課題,梯形面積的計算)
3學(xué)生探討結(jié)束后讓學(xué)生代表發(fā)言,總結(jié)歸納三角形三邊的不等關(guān)系。學(xué)生代表可結(jié)合教具演示。教師問:我們是否要把三條線段中的每兩條線段都相加后才能作出判斷?有沒有快捷的方法?(用較小的兩條線段的和與第三條線段的大小關(guān)系來檢驗)。4得到結(jié)論:三角形任意兩邊之和大于第三邊(電腦顯示)。教師問:三角形的兩邊之和大于第三邊,那么,三角形的兩邊之差與第三邊有何關(guān)系呢?感興趣的同學(xué)還可以下課繼續(xù)研究。5鞏固練習(xí):為了營造更美的城市,許多城市加強(qiáng)了綠化建設(shè)。這些綠化地帶是不允許踩的。(電腦動畫演示有人斜穿草地的實踐問題)。他運(yùn)用了我們學(xué)習(xí)過的什么知識?6(1)有人說自己步子大,一步能走兩米多,你相信嗎?為什么?(由學(xué)生小組討論后回答。然后電腦演示籃球明星姚明的身高及腿長,以此來判斷步幅應(yīng)有多大?)
重點分析:本節(jié)課的重點是離散型隨機(jī)變量的概率分布,難點是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
教學(xué)目的:1、通過貼近學(xué)生生活實際的素材,在豐富多彩的實踐活動中充分體會時、分、秒的實際意義。2、通過練習(xí),學(xué)生比較熟練地進(jìn)行一些簡單的時間計算教學(xué)重、難點:時間單位的簡單轉(zhuǎn)換和求經(jīng)過時間的方法。教學(xué)過程:第2題,先讓學(xué)生獨立完成,再讓學(xué)生說一說每一題是怎么比較的,允許學(xué)生用不同的方法進(jìn)行比較,只要說得有道理就行。第3題,讀讀書上的三個例子,并要求學(xué)生收集類似的信息。第4、5題,學(xué)生計算經(jīng)過的時間。如果部分學(xué)生有困難,讓他們借助鐘面模型加以演示、理解,教師給予適當(dāng)?shù)膸椭?。?題,要求學(xué)生先估計,再實際進(jìn)行驗證,驗證的數(shù)據(jù)可以由學(xué)生和家長一起完成。第7題,事先讓學(xué)生找?guī)讉€自己感興趣的節(jié)目,想辦法把它們開始和結(jié)束的時刻都記錄下來。
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進(jìn)行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。
1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.