∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點(diǎn)二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因?yàn)锳E=BE,所以S△ABE=12AE·BE=12AE2.又因?yàn)锳E2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因?yàn)锳C2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
意圖:課后作業(yè)設(shè)計包括了三個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴(kuò)展學(xué)生的知識面;作業(yè)3是為了拓廣知識,進(jìn)行課后探究而設(shè)計,通過此題可讓學(xué)生進(jìn)一步認(rèn)識勾股定理的前提條件.效果:學(xué)生進(jìn)一步加強(qiáng)對本課知識的理解和掌握.教學(xué)設(shè)計反思(一)設(shè)計理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動學(xué)習(xí).教師只在學(xué)生遇到困難時,進(jìn)行引導(dǎo)或組織學(xué)生通過討論來突破難點(diǎn).(二)突出重點(diǎn)、突破難點(diǎn)的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.
探究點(diǎn)二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點(diǎn),求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應(yīng)是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過的知識來推導(dǎo)出新的定理以及運(yùn)用新的定理解決相關(guān)問題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強(qiáng)化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗(yàn)中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實(shí)生活相聯(lián)系的游戲?yàn)檩d體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進(jìn)一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個圖形中的三角形均為格點(diǎn)三角形,可以根據(jù)勾股定理求出各邊的長,然后根據(jù)三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應(yīng)邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設(shè)計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學(xué)生已學(xué)的知識入手,通過設(shè)置問題,引導(dǎo)學(xué)生進(jìn)行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì).
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對對應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對對應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點(diǎn)為位似中心時,畫圖最簡便.三、板書設(shè)計
1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補(bǔ) D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
(三)學(xué)以致用,鞏固新知為鞏固本節(jié)的教學(xué)重點(diǎn)我再次給出三道問題: 1)絕對值是7的數(shù)有幾個?各是什么?有沒有絕對值是-2的數(shù)?2)絕對值是0的數(shù)有幾個?各是什么? 3)絕對值小于3的整數(shù)一共有多少個?先讓學(xué)生通過小組討論得出結(jié)果,通過以上練習(xí)使學(xué)生在掌握知識的基礎(chǔ)上達(dá)到靈活運(yùn)用,形成一定的能力。(四)總結(jié)歸納,知識升華小結(jié)時我也將充分發(fā)揮學(xué)生學(xué)習(xí)的主動性,發(fā)揮教師在教學(xué)的啟發(fā)引導(dǎo)作用,和學(xué)生一起合作把本節(jié)課所學(xué)的內(nèi)容做一個小結(jié)。(五)布置作業(yè),拓展新知布置作業(yè)不是目的,目的是使學(xué)生能夠更好地掌握并運(yùn)用本節(jié)課的內(nèi)容。所以我會布置這樣一個作業(yè):請學(xué)生回家在父母的幫助下,找出南方和北方各三個城市的溫度,并比較這些溫度的大小,并寫出每個溫度的絕對值進(jìn)行比較
五、課堂設(shè)計理念本節(jié)課著力體現(xiàn)以下幾個方面:1、突出問題的應(yīng)用意識。在各個環(huán)節(jié)的安排上都設(shè)計成一個個問題,使學(xué)生能圍繞問題展開討思考、討論,進(jìn)行學(xué)習(xí)。2、體現(xiàn)學(xué)生的主體意識。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納。3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。4、滲透建模思想。把實(shí)際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問題抽象出方程模型的能力。
最后我引導(dǎo)學(xué)生觀察自己手中的量角器引導(dǎo)學(xué)生在測量的時候有時用度的單位還不夠就必須用到比度還小的單位分和秒,進(jìn)而明白度分秒之間的轉(zhuǎn)換關(guān)系,并且引導(dǎo)學(xué)生對比和度分秒進(jìn)制一樣的還有時間。從而進(jìn)入到例題2的講解。接下來讓學(xué)生通過隨堂練習(xí)來加強(qiáng)和鞏固本節(jié)課的內(nèi)容。提高學(xué)生對本節(jié)課知識的系統(tǒng)綜合。(四)歸納總結(jié)。小結(jié)主要由學(xué)生完成,我作出適當(dāng)?shù)难a(bǔ)充。最后總結(jié)角的比較表方法及估測和某些角之間的等量關(guān)系的書寫基本的幾何語句并能根據(jù)語句畫出幾何圖形。(五)布置作業(yè)通過作業(yè)及時了解學(xué)生學(xué)習(xí)效果,調(diào)整教學(xué)安排。使學(xué)生通過獨(dú)立思考,自我評價學(xué)習(xí)效果;學(xué)會反思,發(fā)現(xiàn)問題;并試著通過閱讀教材、查找資料或與同伴交流解決問題。
通過有針對性的練習(xí),鞏固所學(xué),拓展知識,形成應(yīng)用能力。本環(huán)節(jié)主要是針對學(xué)生對本節(jié)內(nèi)容的掌握程度進(jìn)行檢測反饋。學(xué)生在經(jīng)過自學(xué)、置疑、解疑、教師點(diǎn)撥后作一套本節(jié)的檢測題。做完后,教師或?qū)W生給出答案,并給予簡單解析。教師對檢測成績做以簡單的統(tǒng)計,了解本節(jié)課的學(xué)習(xí)效果。檢測題必須精心設(shè)計與安排,因?yàn)閷W(xué)生在做經(jīng)過精心安排的檢測題時,不僅在積極地掌握數(shù)學(xué)知識,而且能獲得進(jìn)行創(chuàng)造性思維的能力。要充分發(fā)揮檢測題的功能,設(shè)計檢測題時應(yīng)由淺入深、難易適當(dāng)、逐步提高、突出重點(diǎn)與關(guān)鍵、注意題型的搭配。在試題設(shè)計上,應(yīng)將知識、素質(zhì)、能力的考查統(tǒng)一起來,既有知識性、分析性題目,又有應(yīng)用性、直覺形象性題目。提高創(chuàng)新性題型的比重和難度,少問“是什么”,多問“為什么”、“對某些問題,你以為如何”等,增強(qiáng)答案的發(fā)散性。
按此規(guī)律,第n個式子是 。師生活動:學(xué)生通過觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結(jié)論。設(shè)計意圖:進(jìn)一步理解字母表示數(shù)的意義,理解用含有字母的數(shù)學(xué)式子表示實(shí)際問題中的數(shù)量關(guān)系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動:教師舉例說明比如:如果p表示我們班的人數(shù),我們班80%的同學(xué)喜歡上數(shù)學(xué)課,那么0.8p 就可以表示我們班喜歡數(shù)學(xué)課的人數(shù)。學(xué)生思考、交流后發(fā)言五、練習(xí)檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個數(shù)比a的 倍小5,則這個數(shù)為 ;(3)全校學(xué)生總數(shù)是x,其中女生占總數(shù)52%,則女生人數(shù)是 ,男生人數(shù)是 ;(4)某校前年購買計算機(jī) x 臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,則學(xué)校三年共購買計算機(jī) 臺;(5)某班有a名學(xué)生,現(xiàn)把一批圖書分給全班學(xué)生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個兩位數(shù),十位上的數(shù)字為a,個位上的數(shù)字b,則這個兩位數(shù)為 .師生活動:學(xué)生板演,師生共同評價總結(jié)注意(5)帶分?jǐn)?shù)化假分?jǐn)?shù)設(shè)計意圖:進(jìn)一步提高用含有字母的式子表示實(shí)際問題中的數(shù)量關(guān)系的能力。
解析:平行線中的拐點(diǎn)問題,通常需過拐點(diǎn)作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點(diǎn)E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì)定理角平分線上的點(diǎn)到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對角以及角平分線的性質(zhì)的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練.
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.2 區(qū)間教 學(xué) 目 標(biāo)知識目標(biāo):1、理解區(qū)間的概念 2、掌握區(qū)間的表示方法 技能目標(biāo):1、能進(jìn)行區(qū)間與不等式的互相轉(zhuǎn)換 2、能在數(shù)軸上正確畫出相應(yīng)的區(qū)間 情感目標(biāo):體會不等式在日常生活中的應(yīng)用,感受數(shù)學(xué)的有用性教學(xué) 重點(diǎn) 和 難點(diǎn) 重點(diǎn): 不等式的概念和基本性質(zhì) 難點(diǎn): 1、會比較兩個整式的大小 2、能根據(jù)應(yīng)用題的表述,列出相應(yīng)的表達(dá)式教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.1
第二條設(shè)計、制作費(fèi)用(一)設(shè)計與制作費(fèi)用總計為:人民幣 元(大寫: 圓整)。(二)付款時間:甲方在本合同生效之日起 日內(nèi)向乙方交付預(yù)付款 元(大寫 圓),即總費(fèi)用的 %;乙方向甲方交付設(shè)計的小樣通過甲方審核后 日內(nèi),甲方支付總費(fèi)用的 %,即人民幣 元(大寫人民幣 圓);甲方在收到乙方的設(shè)計制作成品后 日內(nèi)向乙方支付剩余合同款項(xiàng),即總費(fèi)用的 %,人民幣 元(大寫人民幣 圓)。(三)付款方式:甲方可通過以下方式付款:(1)現(xiàn)金;(2)轉(zhuǎn)賬;(3)支票。乙方的賬戶信息如下:開 戶 行: 賬戶名稱: 賬 號: (四)乙方應(yīng)在收到上述款項(xiàng)所規(guī)定金額后 個工作日內(nèi)向甲方出具前述金額的正規(guī)稅務(wù)發(fā)票。
3.雙方的項(xiàng)目負(fù)責(zé)人及項(xiàng)目專員的相關(guān)信息如下: 甲方負(fù)責(zé)人: 電話: 電子郵箱: 乙方負(fù)責(zé)人: 電話: 電子郵箱: 4.乙方向甲方提交的項(xiàng)目階段工作成果的形式為電子版設(shè)計稿,以電子郵件方式向甲方項(xiàng)目負(fù)責(zé)人發(fā)送。甲方對項(xiàng)目工作成果的確認(rèn)意見或修改意見,須項(xiàng)目負(fù)責(zé)人用電子郵件的方式向乙方回復(fù)。5.最終搞乙方將源文件打包發(fā)送至甲方指定郵箱(若有實(shí)物,則寄送至甲方指定的地址),甲方按其所收在簽收單上簽字蓋章,乙方即完成了本合同受托工作的交付。五、著作權(quán)的歸屬 1.甲方在未付清所有委托設(shè)計制作費(fèi)用之前,乙方設(shè)計的作品著作權(quán)歸乙方,甲方對該作品不享有任何權(quán)利。 2.甲方將委托設(shè)計制作的所有費(fèi)用結(jié)算完畢后,甲方擁有作品的所有權(quán)、使用權(quán)和修改權(quán)。甲方在未付清余款之前擅自使用或者修改乙方設(shè)計制作的作品,構(gòu)成對乙方的侵權(quán),乙方有權(quán)追究甲方的侵權(quán)責(zé)任。 六、雙方的權(quán)利及義務(wù) (一)甲方權(quán)利及義務(wù) 1.甲方有權(quán)對乙方的設(shè)計提出建議和思路,以使乙方設(shè)計的作品更符合甲方要求。但如果甲方對已經(jīng)確認(rèn)的工作成果提出修改意見,即構(gòu)成了一個新的工作要求,甲方應(yīng)支付相關(guān)費(fèi)用,具體金額由甲乙雙方另行協(xié)商。 2.甲方有權(quán)對乙方所設(shè)計的作品初稿提出修改意見。 3.甲方在付清所有設(shè)計費(fèi)用后享有設(shè)計作品的所有權(quán)、使用權(quán)和修改權(quán)。 4.甲方有義務(wù)按照合同約定支付相關(guān)費(fèi)用。 5.甲方有義務(wù)提供與乙方設(shè)計有關(guān)的資料及其他乙方需要的資料給乙方,甲方應(yīng)保證所提供的相關(guān)資料不存在權(quán)利瑕疵,不侵犯任何第三人的權(quán)利,若有侵權(quán),一切責(zé)任由甲方承擔(dān)。 6.在項(xiàng)目工作流程中,甲方不得向乙方索取未完成、未確定的設(shè)計稿件。7.如甲方不能在約定的審稿周期內(nèi)向乙方回復(fù)確認(rèn)意見或修改意見,則視為甲方審稿延誤。則后續(xù)的項(xiàng)目工作依甲方延遲的時間做相應(yīng)順延。 (二)乙方權(quán)利及義務(wù) 1.乙方有權(quán)要求甲方提供與設(shè)計有關(guān)的料供乙方設(shè)計參考。如乙方認(rèn)為資料不能滿足項(xiàng)目要求,應(yīng)要求甲方補(bǔ)充或重新提供。甲方應(yīng)在接到乙方通知后立即補(bǔ)充或重新提供。2.乙方有權(quán)要求甲方按照合同約定支付相應(yīng)款項(xiàng)。 3.乙方對設(shè)計的作品享有著作權(quán),有權(quán)要求甲方在未付清款項(xiàng)之前不得使用該設(shè)計作品。 4.乙方需按照甲方的要求進(jìn)行作品設(shè)計與制作。 5.乙方需按照合同約定按時交付設(shè)計制作作品。若甲方未按前款約定按時支付階段性款項(xiàng),則乙方有權(quán)對最終交付日期進(jìn)行相應(yīng)順延,且不承擔(dān)違約責(zé)任。 七、違約責(zé)任 1.甲方在設(shè)計作品初稿完成前終止合同,無權(quán)要求退回其已支付的所有費(fèi)用,剩余費(fèi)用無需支付;甲方在乙方作品初稿完成后終止合同的,應(yīng)當(dāng)支付全額設(shè)計費(fèi)用。 2.乙方如無正當(dāng)理由提前終止合同,所收取的費(fèi)用應(yīng)當(dāng)全部退回給甲方。 八、保密條款 1.雙方同意對本合同內(nèi)容、任一階段的項(xiàng)目工作成果予以保密。對因履行合同而知曉的對方資料予以保密。 2.雙方同意,甲方在未付清合同總價款之前,不得使用乙方提交的項(xiàng)目工作成果,也不得將其披露給任何第三方。 3.違反本條約定給對方造成損失的,應(yīng)承擔(dān)相應(yīng)的賠償責(zé)任。九、其 他 1.本合同壹式貳份,甲乙雙方各持對方簽字合同一份,具有同等法律效力。本合同自簽字蓋章之日起生效。2.未盡事宜雙方另行簽訂補(bǔ)充協(xié)議,補(bǔ)充協(xié)議與本協(xié)議具有同等法律效力。3.本合同履行的中如發(fā)生爭議,雙方應(yīng)本著為達(dá)到本合同的目的而進(jìn)行友好協(xié)商。如協(xié)商不成,雙方同意將爭議提交合同簽訂地人民法院訴訟解決。 4.合同簽訂地: (以下無正文)甲方(蓋章): 乙方(蓋章):甲方代表簽名: 乙方代表簽名: 年 月 日 年 月 日
教學(xué)目標(biāo)【知識與技能】1.能結(jié)合具體圖形理解垂直的概念,能經(jīng)過一點(diǎn)畫已知直線的垂線.2.通過畫圖,理解垂直公理及“垂線段最短”這個公理.3.理解點(diǎn)到直線的距離這一重要概念.4.初步鍛煉作圖能力,能運(yùn)用本節(jié)的兩個公理進(jìn)行簡單的說理或應(yīng)用.【過程與方法】通過畫圖探究出兩個公理,在不同的情況下過一點(diǎn)作已知直線的垂線,通過看圖會找出點(diǎn)到直線的距離,在此基礎(chǔ)上深入理解本節(jié)的兩個公理,進(jìn)而運(yùn)用它們進(jìn)行簡單的說理或應(yīng)用.【情感態(tài)度】進(jìn)一步進(jìn)行畫圖、探究、歸納等數(shù)學(xué)活動,特別強(qiáng)調(diào)動手畫幾何圖形,體驗(yàn)數(shù)學(xué)的嚴(yán)密性、科學(xué)性、美觀性.