質疑解難 1.結合資料袋中的內容介紹本文主人公一李四光?! ?.學生針對課文內容質疑,師生共同解疑?! 。?)對預習認真,能主動、正確解疑的同學給予表揚。 ?。?)主要解決以下疑難: 隕石:大的流星在經過地球大氣層時,沒有完全燒毀墜落到地球上的含石質較多或全部為石質的隕星。 地質學家:從事地球物質形成和地殼構造研究,以探討地球的形成和發(fā)展的科學家?! ⊥回#焊呗??! 〉谒募o:地質歷史的最后一個紀。約250萬年前至今。此時高緯度地區(qū)廣泛地發(fā)生了多次冰川作用。 冰川:在高山或兩極地區(qū),積雪由于自身的壓力變成冰塊(或積雪融化、下滲凍結成冰塊兒又因重力作用而沿著地面傾斜方面移動,這種移動的大冰塊叫做冰川。在地質上的新生代第四紀,氣候非常寒冷,世界上的許多地方被冰川覆蓋,稱第四紀冰川?! ∏貛X:橫貫我國中部,東西走向的古老語皺斷層山脈。我國地理上的南北分界線。分布有冰川槽谷、角峰等。
《讀不完的大書》這篇課文以兒童的視角描寫了野外與自家房前屋后的自然環(huán)境,并且融入了豐富的想象,展現(xiàn)出一幅幅生動有趣的大自然畫面。學習這篇課文,學生可以借助課文優(yōu)美的句子走進大自然,體會作者對大自然的喜愛之情。本課重點是借助第二題的學習,了解課文的主要內容,并且通過朗讀、想象畫面、聯(lián)系生活等方式,感受課文中生動的語言并積累摘抄,結合課后第三題寫一寫從這篇課文中讀到了什么。本課教學可注意兩點內容:一要幫助學生理清文章的思路。熟讀課文之后,引導學生說說課文都寫了哪些好玩的東西。二要引導學生抓住重點語句討論、交流。除了課后思考題二所列的4個句子外,還可以鼓勵學生根據(jù)自己的理解再提出幾個句子。討論、交流時,可在引導學生理解語句含義的基礎上,啟發(fā)學生聯(lián)系實際。 1.會認“妙、奏”等11個生字,會寫“讀、蝦”等13個生字。掌握“高遠、沉思”等詞語。2.正確、流利、有感情地朗讀課文,聯(lián)系生活體驗,感悟課文內容,感受大自然的樂趣。3.能找出作者具體描寫了哪些有趣的事物,積累喜歡的語句。 1.教學重點:能找出作者具體描寫了哪些有趣的事物,感受課文生動的語言,感受大自然的樂趣。2.教學難點:能簡單地寫出自己感受到的大自然的樂趣,并和同學交流。 2課時
教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉化。2. 會根據(jù)三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談談你的看法。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
(四)提高應用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設計意圖:訓練學生靈活運用知識的能力(五)小結反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形相似. 2、在找對應角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調兩個基本圖形,培養(yǎng)學生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應角的方法:①已知角相等;②已知角度計算得出相等的對應角;③公共角;④對頂角;⑤同角的余(補)角相等.
接著,引導學生回答命題1的題設、結論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學表達式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應高。求證:AD/A/D/=K首先讓學生回憶,證明線段成比例學過哪些方法,接著引導學生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學生能找到含對應高和對應邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學生口述教師板書規(guī)范的證明過程。接著問學生還有哪些證明方法?同理可證得其他兩邊上的對應高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學表達式和證明方法與命題1類似,所以為了提高教學效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導學生課堂練習證明這兩個命題。
1.經歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或實物原型.一、情境導入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側成峰,遠近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.
【教學目標】1.經歷從不同方向觀察物體的活動過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達自己的思維過程.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的圖形.3.能識別簡單物體的三視圖,會畫立方體及其簡單組合體的三視圖.【基礎知識精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個點表示圓錐的頂點,因為從上往下看圓錐時先看到圓錐的頂點,再看到底面的圓.3.如何畫三視圖 當用若干個小正方體搭成新的幾何體,如何畫這個新的幾何體的三視圖?
探究點二:三角形內角和定理的推論2如圖,P是△ABC內的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結:利用推論2證明角的大小時,兩個角應是同一個三角形的內角和外角.若不是,就需借助中間量轉化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內角利用已經學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內角)∴∠BDC>∠A(不等式的性質)(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學生的證明思路,特別是不等關系的證明題,因為學生接觸較少,因此更需要加強練習.注意事項:學生對于幾何圖形中的不等關系的證明比較陌生,因此有必要在證明第2小題中,要引導學生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關系的傳遞性得出∠1>∠2。
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結:由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結合左視圖驗證該物體的左側面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關系.通過具體活動,積累學生的觀察、想象物體投影的經驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.
教學目標:1.經歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉化。3.會根據(jù)三視圖描述原幾何體。教學重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法教學過程設計一、實物觀察、空間想像設置:學生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學們畫出三視圖。而后,再要求學生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經歷探索相似三角形的 性質的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結:由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
2.過程與方法 通過研究三角形、四邊形的內角和,讓學生經歷觀察、思考、推理、歸納的過程,滲透猜想--驗證--結論--運用的學習方法,培養(yǎng)學生動手操作和合作交流的能力,增強學生的主體探究意識。3.情感態(tài)度與價值觀 培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學、應用數(shù)學的興趣,體驗學習數(shù)學的快樂?!窘虒W重點】 引導學生發(fā)現(xiàn)三角形內角和是180°,并能應用這一知識解決一些簡單問題;通過量、拼、算等探究活動,使學生了解任意四邊形的內角和都是3600 。【教學難點】 用不同方法驗證三角形的內角和是180°;引導學生利用轉化的方法把四邊形或多邊形轉化成三角形,發(fā)現(xiàn)多邊形的邊數(shù)與內角和之間的關系?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】多媒體、不同類型的三角形各一個、量角器。
一、 教材分析“三角形的特性”是人教版小學數(shù)學四年級下冊第五章第一節(jié)的內容,本節(jié)課主要闡述了三個方面,一是三角形的定義,二是三角形高和底的定義 。是學生在學習了線段、角基礎上進行教學的,為進一步學習三角形的分類和內角和打下堅定的基礎。二、 學情分析對于學情的合理把握是上好一堂課的基礎。本節(jié)課的授課對象為四年級的學生,他們的觀察、記憶、想象能力在迅速的發(fā)展,有強烈的好奇心。所以在教學過程中應該更多的激發(fā)他們的學習興趣和情感動力,引導他們多觀察,多想象。 三、 教學目標根據(jù)新課程標準、教材特點、學生實際,我確定了如下教學目標:(1)知識與技能目標:讓學生初步理解并掌握三角形的特性及三角形高和底的含義,能準確作出三角形的高 。(2)過程與方法目標:經歷猜測、觀察、操作等教學活動,培養(yǎng)學生相互轉化、滲透、遷移的數(shù)學思想方法。(3)情感態(tài)度與價值觀目標:讓學生積極參與數(shù)學學習活動,對數(shù)學有好奇心和求知欲。
一、說教材小數(shù)的初步認識是在學生熟練地掌握了分數(shù)的基礎上進行學習的內容。本課內容包括認識一位小數(shù)、兩位小數(shù)和它的讀、寫法。認識一位小數(shù)和兩位小數(shù)是小數(shù)的初步認識中最基礎的知識,學習小數(shù)不僅為學生準確清晰地理解小數(shù)的含義,也為今后系統(tǒng)地學習小數(shù)的知識打下基礎。同時,小數(shù)的知識在實際生活中應用較廣泛,有利于學生運用所學知識技能來解決一些實際的問題。學情分析:小學三年級的學生對小數(shù)并不是全然不知,在日常生活中已經有所接觸,但由于小數(shù)是分數(shù)的另一種表現(xiàn)形式,其意義具有一定程度的抽象性,學生要深刻理解小數(shù)的意義,還有一定的困難,針對這一現(xiàn)狀,教學中應充分考慮學生的生活經驗,利用生活與數(shù)學知識的契合點,重視直觀、引導、注重啟發(fā),利用小數(shù)與分數(shù)之間的聯(lián)系,讓學生親歷小數(shù)的形成過程。
三、說教材的重點和難點教學重點是:通過觀察、討論,讓學生探究發(fā)現(xiàn)三角形的不同分類方法,從而進一步掌握三角形的特征。教學難點是:通過實踐操作,讓學生理解掌握等腰三角形和等邊三角形的基本特征及其關系。四、說教學理念1、波利亞說:“學習任何知識的最佳途經都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的規(guī)律、性質和內在聯(lián)系”。學生的學習過程是一個主動建構知識的過程,教師要激活學生先前的知識經驗,創(chuàng)設具體情境,讓學生在經歷、體驗、探索中真正感悟。2、體現(xiàn)學生的主體作用,把握好教師的主導地位,讓學生在活動中體驗,在體驗中學習、在學習中感悟。 3、突出體現(xiàn)教學的16字原則:主體探究、創(chuàng)境激趣、合作互動、創(chuàng)新發(fā)展。 五、說教法1、運用操作法,確定每個三角形的三個內角各是什么角。 2、通過比較法,得出各個三角形的異同。3、采用探究法,找出等腰三角形和等邊三角形的聯(lián)系。 4、通過游戲與練習內化新知。
一、說教材我說課的內容是人教版小學數(shù)學三年級下冊中的“除數(shù)是一位數(shù)的除法單元的整理與復習”。這個單元的教學是在學生掌握了整十、整百的數(shù)除以一位數(shù)的口算、除法的估算和筆算以及驗算的基礎上進行的,它是以后學習較復雜除法的基礎。本節(jié)課的教學重點是通過整理與復習,學生進一步理解除法的算理,掌握算法,提高計算能力,教學難點是在整理與復習中形成知識網(wǎng)絡,在學習中學會整理與復習的方法。眾所周知,整理和復習是為教學中的單元復習、單元知識小結而設計和編排的,以幫助學生達到“再現(xiàn)、整理、鞏固已學知識,并使之系統(tǒng)化”的目的。根據(jù)復習課型的這一特點和學生的實際情況,我把教學目標分為三個方面:(1)知識性目標:通過復習使學生把“除數(shù)是一位數(shù)的除法”這一單元的有關計算知識系統(tǒng)化,條理化。(2)能力目標:使學生學會在系統(tǒng)復習的基礎上理清知識的脈絡,進行分類歸納、有序整理的學習方法,提高學習能力。(3)情感目標:通過自主探索與合作學習,培養(yǎng)學生的創(chuàng)新意識和團隊精神,滲透生活中處處有數(shù)學的觀念,并通過學生解決實際問題,感受數(shù)學與實際生活的密切聯(lián)系。