四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
一、教學目標1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學生獲得數(shù)學猜想的經(jīng)驗,激發(fā)學生探索知識的興趣,體驗數(shù)學活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習2就是通過讓學生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達到加深理解判定方法2的條件的目的的.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習課時作業(yè):
【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
學生在觀察和討論后,由師生合作,歸納出中心對稱的性質(zhì):(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分;(2)關(guān)于中心對稱的兩個圖形是全等圖形.讓學生嘗試自己證明△ABC與△A′B′C′全等,然后在教師的引導下相互交流。接著,對“軸對稱”和“中心對稱”的概念進行比較,我采用列表格的方式,從三個方面分別讓學生去填,意圖讓學生把新學的知識及時納入到已學的知識體系中去。4、靈活運用體會內(nèi)涵1)首先講授例1。(1)選擇點O為對稱中心,畫出點A關(guān)于點O的對稱點A′;(2)選擇點O為對稱中心,畫出線段AB關(guān)于點O的對稱線段A′B′.(3)已知四邊形ABCD和O點,畫出四邊形ABCD關(guān)于O點的對稱圖形。在老師的引導下,共同完成作圖,并規(guī)范畫圖方法:要畫一個多邊形關(guān)于已知點的對稱圖形,只要畫出這個多邊形的各個頂點關(guān)于已知點的對稱點,再順次連接各點即可。在本次活動中,意圖利用中心對稱的性質(zhì)進行作圖,加強對中心對稱性質(zhì)的理解。
[設(shè)計意圖]節(jié)環(huán)節(jié)的設(shè)置是為了使學生在掌握不等式性質(zhì)的基礎(chǔ)之上,加以拓展的作業(yè),使課程的內(nèi)容不但能滿足全體學生需求,更能滿足學有余力的學生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結(jié)合的思想,學生通過參與活動,體會挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識給他們帶來的快感中完成本節(jié)課的學習,(六)課堂小結(jié)最后,凱旋歸來話收獲:通過本節(jié)課的學習,你收獲到了什么?學生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學會了不等式的三條基本性質(zhì)2、學會了用字母來表示不等式的性質(zhì)3、學生不等式與等式的區(qū)別等等;學生在回答的時候,老師加以評價和表揚并展示主要內(nèi)容;這里教師要再次強調(diào),特別注意性質(zhì)3,兩邊同乘(或除以)一個負數(shù)時,不等號的方向要改變,數(shù)學思想的方法是數(shù)學的靈魂,這節(jié)課我們體驗了三種數(shù)學思想,一是類比的思想,二是數(shù)形結(jié)合的思想,三是分類討論的思想,
2、測量。各個組的成員根據(jù)上面的設(shè)計方案在小組長的帶領(lǐng)下到操場測量相關(guān)數(shù)據(jù)。比一比,哪組最先測量完并回到教室?(二)根據(jù)測量結(jié)果計算相關(guān)物體高度。時間為2分鐘。要求:獨立計算,并填寫好實驗報告上。(三)展示測量結(jié)果。時間為3分鐘。各組都將自己計算的結(jié)果報告,看哪些同學計算準確些?(四)整理實驗報告,上交作為作業(yè)。此活動主要是讓學生通過動手實踐,分工合作,近一步理解三角函數(shù)知識,以及從中體會學習數(shù)學的重要性,培養(yǎng)學生學習數(shù)學的興趣和激情,增強團隊意識。四、小結(jié):本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識上:2、 思想方法上:五、板書設(shè)計1、目標展示在小黑板上2、自主學習的問題展示在小黑板上3、學生設(shè)計的方案示意圖在小組展示板上展示
通過以上例題幫助學生總結(jié)出分式乘除法的運算步驟(當分式的分子與分母都是單項式時和當分式的分子、分母中有多項式兩種情況)4、隨堂練習。(約5分鐘)76頁第一題,共3個小題。教學效果:在總結(jié)出分式乘除法的運算步驟后,大部分學生能很好的掌握,但是還有些學生忘記運算結(jié)果要化成最簡形式,老師要及時提醒學生。 分解因式的知識沒掌握好,將會影響到分式的運算,所以有的學生有必要復習和鞏固一下分解因式的知識。5、數(shù)學理解(約5分鐘)教材77頁的數(shù)學理解,學生很容易出現(xiàn)像小明那樣的錯誤。但是也很容易找出錯誤的原因。補充例3 計算(xy-x2)÷ ? 教學效果:鞏固分式乘除法法則,掌握分式乘除法混合運算的方法。提醒學生,負號要提到分式前面去。6、課堂小結(jié)(約3分鐘)先學生分組小結(jié),在全班交流,最后老師總結(jié)。
注意:平行四邊形中對邊是指無公共點的邊,對角是指不相鄰的角,鄰邊是指有公共端點的邊,鄰角是指有一條公共邊的兩個角.而三角形對邊是指一個角的對邊,對角是指一條邊的對角.(教學時要結(jié)合圖形,讓學生認識清楚)設(shè)計意圖:通過觀察圖片和回顧以前的知識,使學生由感性認識上升到理性認識。通過描述平行四邊形的特點和定義,也培養(yǎng)了學生的語言表達能力。同時也滲透了一些由實際問題轉(zhuǎn)化為數(shù)學問題的“轉(zhuǎn)化”的數(shù)學思想。(三)、引導實驗探索新知【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外,還有什么特殊的性質(zhì)呢?我們一起來探究一下.動手操作并思考:讓學生根據(jù)平行四邊形的定義畫一個一個平行四邊形,觀察這個四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外以,它的邊和角之間有什么關(guān)系?度量一下,是不是和你猜想的一致?
回顧整節(jié)課的設(shè)計,我主要著力于以下三個方面:1.關(guān)于教材處理:認真處理教材,目的只有一個——為我的學生盡可能多地提供參與活動的機會,在本節(jié)課中主要體現(xiàn)在以下幾點:(1)通過“合成代數(shù)式”、“賦予分式實際意義”兩個活動,激發(fā)興趣,吸引學生參與活動;(2)通過“互舉例子”、“填表探究”兩個活動,鼓勵學生主動參與活動;(3)通過“應(yīng)用新知”這個環(huán)節(jié),促進學生參與活動。2.關(guān)于教與學方法的選擇:我在設(shè)計中始終關(guān)注:如何精心組織活動,讓學生在豐富的活動中探索、交流與創(chuàng)新,因此我選擇了“引導——發(fā)現(xiàn)教學法”,具體做法如下: (1)用數(shù)、式通性的思想,類比分數(shù),引導學生獨立思考、小組協(xié)作,完成對分式概念及意義的自主建構(gòu),突出數(shù)學合情推理能力的養(yǎng)成;(2)加強應(yīng)用性,通過“應(yīng)用新知”、“深化拓展”兩個環(huán)節(jié),密切分式與現(xiàn)實生活及其他學科的聯(lián)系,發(fā)展數(shù)學應(yīng)用意識,突出分式的模型思想。
設(shè)計目的:通過學生的反饋練習,使教師能全面了解學生對公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時地進行查缺補漏.但依然有部分同學會出現(xiàn)問題,如對首項出現(xiàn)負號時不能正確處理,此時,需要老師進一步引導.第四環(huán)節(jié) 課堂小結(jié)從今天的課程中,你學到了哪些知識?你認為提公因式法與單項式乘多項式有什么關(guān)系?怎樣用提公因式法分解因式?設(shè)計目的:通過學生的回顧與反思,強化學生對確定公因式的方法及提公因式法的步驟的理解,進一步清楚地了解提公因式法與單項式乘多項式的互逆關(guān)系,加深對類比的數(shù)學思想的理解。第五環(huán)節(jié) 當堂檢測把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2設(shè)計目的:檢驗學生的目標達成情況,其中第五小題供學有余力的學生選作。第六環(huán)節(jié) 課后反思教學反思
情景感知概括運用設(shè)疑誘導動手操作合作交流嘗試活動啟發(fā)引導類比發(fā)現(xiàn)演練結(jié)合觀察分析自主探索問題討論利用嘗試活動“我來當老師!”給學生提供設(shè)計問題的機會,培養(yǎng)他們實事求是的科學態(tài)度,勇于質(zhì)疑、敢于創(chuàng)新的良好習慣及數(shù)學應(yīng)用能力。例1、根據(jù)因式分解的概念,判斷下列由左邊到右邊的變形,哪些是因式分解,哪些不是,為什么?通過羅列一些似是而非、容易產(chǎn)生錯誤的對象讓學生辨析,促使他們認識概念的本質(zhì)、確定概念的外延,從而形成良好的認知結(jié)構(gòu)。例2:解答下列問題:(1)993-99能被99整除嗎?能被98整除嗎?能被100整除嗎?(2)求代數(shù)式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。讓學生進一步體會用分解因式解決相關(guān)問題的簡捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),則m=,n=。
活動四:自主學習,尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫???”同桌演示尺規(guī)作圖。最后折紙驗證,使整個學習過程更加嚴謹。我將用下面這個課件給學生展示作圖過程。再次回顧情境,讓學生完成情境中的問題。(三)講練結(jié)合,鞏固新知第一個題目是直接運用性質(zhì)解決問題,比較簡單,面向全體學生。我還設(shè)計了第二個題目,想訓練學生審題的能力。(四)課堂小結(jié)在學生們共同歸納總結(jié)本節(jié)課的過程中,讓學生獲得數(shù)學思考上的提高和感受成功的喜悅并進一步系統(tǒng)地完善本節(jié)課的知識。(五)當堂檢測為了檢測學生學習情況,我設(shè)計了當堂檢測。第一個題目,讓學生學會轉(zhuǎn)化的思想來解決問題;第二個題目練習尺規(guī)作圖。
說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設(shè)計意圖:例1是讓學生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應(yīng)關(guān)系,從而進一步加深學生對不等式解集的理解,以使學生進一步領(lǐng)會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結(jié),結(jié)合板書,引導學生自我總結(jié),重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題
a.第127頁隨堂練習1第(1)題。b.一個多邊形的邊都相等,這是一個正多邊形嗎?c.一個多邊形的內(nèi)角都相等,這是一個正多邊形嗎?d.所以,一個相等,也都相等的多邊形才是。(此檢測主要是讓學說出多邊形和正多邊形的定義,因為是在三角形、四邊形的基礎(chǔ)上,定義是一致的,所以不深究。在教材的處理上,把正多邊形放在了前面,兩個較為簡單的概念放在一起,便于學生理解和掌握。)2.各組展示四邊形的內(nèi)角和的計算方法。3.各組展示五邊形的內(nèi)角和的計算方法。(由各組派代表上臺板演,其它組補充,真正讓學生動起來)4.各組選擇前面最優(yōu)的方法,口述六邊形、七邊形的內(nèi)角和的算法。(以此上,學生可以利用對比的方法,選擇作出過三角形的一個頂點的對角線的方法,讓學生探索發(fā)現(xiàn)規(guī)律。)5.據(jù)此,你們認為n邊形的內(nèi)角和應(yīng)該怎樣計算。(注意n的條件)五、當堂訓練。
二、教法分析為了讓學生較好掌握本課內(nèi)容,本節(jié)課主要采用觀察法、討論法等教學方法,通過創(chuàng)設(shè)情境,使學生由淺到深,由易到難分層次對本節(jié)課內(nèi)容進行掌握。三、學法分析本課要求學生通過自主地觀察、討論、反思來參與學習,認識和理解數(shù)學知識,學會發(fā)現(xiàn)問題并嘗試解決問題,在學習活動中進一步提升自己的能力。四、教學過程創(chuàng)設(shè)問題情景,引入新課活動內(nèi)容:尋找不等的量 課本例一,例二設(shè)計目的:學生體會在現(xiàn)實生活中除了存在許多等量關(guān)系外,更多的是不等關(guān)系的存在,并通過感受生活中的大量不等關(guān)系,初步體會不等式是刻畫量與量之間關(guān)系的重要數(shù)學模型。經(jīng)歷由具體實例建立不等式模型的過程,進一步發(fā)展學生的符號感與數(shù)學化的能力。課本例四,例五設(shè)計目的:培養(yǎng)學生數(shù)學抽象能力,提高把實際問題轉(zhuǎn)化為數(shù)學問題的能力。六.課堂小結(jié)體會 常量與常量間的不等關(guān)系變量與常量間的不等關(guān)系變量與變量間的不等關(guān)系
1.通過實例體會一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會利用數(shù)軸解較簡單的一元一次不等式組。4.培養(yǎng)學生分析、解決實際問題的能力。5.通過實際問題的解決,體會數(shù)學知識在生活中的應(yīng)用,激發(fā)學生的學習興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數(shù)學的價值。四、教學重、難點分析教學重點:1.理解有關(guān)不等式組的概念.2.會解由兩個一元一次不等式組成的不等式組.教學難點:在數(shù)軸上確定解集.五、教學手段分析本節(jié)課采用多媒體教學,利用多媒體教學信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學內(nèi)容,這樣不但可以提高學習效率和質(zhì)量,而且容易激發(fā)學生學習的興趣,調(diào)動積極性。
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內(nèi)容,是進一步學習分式方程、反比例函數(shù)以及其它數(shù)學知識的基礎(chǔ),同時也是學習物理、化學等學科不可缺少的工具。與其它數(shù)學知識一樣,它在實際生活中有著廣泛的應(yīng)用。學習分式的加減法并熟練地進行運算是學好分式運算的關(guān)鍵,為學生綜合運用多種運算法則拓寬了空間,有利于學生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學難度有所增加,學生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則。考慮到以上這些因素,確定本節(jié)課的目標和重點、難點如下:(一)說教學目標:1.知識與技能目標:理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運算和通分的過程,訓練學生的分式運算能力,培養(yǎng)學生在學習中轉(zhuǎn)化未知問題為已知問題的能力;進一步通過實例發(fā)展學生的符號感。