說明:此處進(jìn)行的是一次嘗試應(yīng)用乘方運算來解決開頭的問題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學(xué)生應(yīng)用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進(jìn)一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習(xí)題是對課本上例題的簡單重復(fù)和模仿,通過本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成??傊?,在整個教學(xué)設(shè)計中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來,不斷從舊知識中獲得新的認(rèn)識,通過不斷進(jìn)行聯(lián)系比較,讓學(xué)生主動自覺地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進(jìn)而優(yōu)化了整個教學(xué)。
一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(上)義務(wù)教育課程標(biāo)準(zhǔn)實驗教材第2章第6節(jié)第一課時的內(nèi)容。它是學(xué)生在已經(jīng)掌握有理數(shù)加法、減法、乘法、除法、乘方以后進(jìn)行學(xué)習(xí)的。它是建立在有理數(shù)的有關(guān)概念和各種運算的意義及法則的基礎(chǔ)上進(jìn)行的綜合性運算。它是本章的重點之一,是以上各種運算的繼續(xù)和發(fā)展,對學(xué)生運算能力和數(shù)學(xué)學(xué)習(xí)能力的培養(yǎng),有著十分重要的意義,同時也是初中數(shù)學(xué)運算的重要內(nèi)容之一,是后續(xù)學(xué)習(xí)的基礎(chǔ)。(二)教學(xué)目標(biāo)的確立:參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識技能目標(biāo):(1)掌握有理數(shù)的混合運算法則及運算順序。(2)熟練的進(jìn)行有理數(shù)的混合運算。2、能力目標(biāo):培養(yǎng)學(xué)生的觀察能力和運算能力。3、情感與態(tài)度目標(biāo):(1)培養(yǎng)學(xué)生在計算前認(rèn)真審題,確定運算順序,計算中按步驟審慎進(jìn)行,并養(yǎng)成驗算的良好的學(xué)習(xí)習(xí)慣。
5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學(xué)生學(xué)的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學(xué)的知識穿插在學(xué)與練當(dāng)中,充分地利用了課堂有限的時間,并且能讓學(xué)生邊學(xué)邊練,及時鞏固。 當(dāng)然這堂課也有很多不足之處,我覺得自己對于課堂上學(xué)生做練習(xí)時出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應(yīng)該吸取經(jīng)驗教訓(xùn),再以后的教學(xué)中加以改進(jìn)。 另外對于多個有理數(shù)相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習(xí)中再做些補充,讓學(xué)生加深理解。從中我也得到一個教訓(xùn),再以后的教學(xué)工作中,我還應(yīng)該多學(xué)習(xí)教學(xué)方法,多思考如何歸納知識點,才能更好地幫學(xué)生形成一個系統(tǒng)的知識系統(tǒng)!
在答案的匯總過程中,要肯定學(xué)生的探索,愛護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲.讓學(xué)生作課堂的主人,陳述自己的結(jié)果.對學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評價;要鼓勵學(xué)生創(chuàng)造性思維,教師要及時抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵,是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑.預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號情況(可遇見情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號兩數(shù)相加;異號兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對值相加;加數(shù)的絕對值相減)⑤ 從和的符號確定方面(同號兩數(shù)相加符號的確定;異號兩數(shù)相加符號的確定)教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏.
接著引導(dǎo)學(xué)生進(jìn)一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學(xué)生的思考經(jīng)歷由一般到特殊的過程。2.截面是其他形狀學(xué)生先猜想正方體的截面還有可能是什么形狀,再利用實驗操作型課件對正方體進(jìn)行無限次的切截,讓學(xué)生在無限次切截的過程中體會截面產(chǎn)生和變化的整個過程,發(fā)現(xiàn)截面產(chǎn)生和變化的規(guī)律。學(xué)生從切截活動中發(fā)現(xiàn)猜想時沒有想到的截面圖形,體會到探索的樂趣。教師再引導(dǎo)學(xué)生歸納正方體截面邊數(shù)的規(guī)律。學(xué)生的認(rèn)知得到升華。接著引導(dǎo)學(xué)生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學(xué)生先猜想圓柱體的截面可能是什么形狀,教師利用實驗操作型課件對圓柱體進(jìn)行無限次的切截,學(xué)生觀察截面形狀。
還有其他解法嗎?從中讓學(xué)生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習(xí)慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學(xué)生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學(xué)生活動:分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學(xué)生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.
1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學(xué)生活動:分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學(xué)生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學(xué)生活動:要求學(xué)生對課前解方程的變形能說出哪一過程是移項.對比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動:把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(xué)(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)
目的:進(jìn)一步理解追擊問題的實質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問題得到解決。環(huán)節(jié)三、運用鞏固活動內(nèi)容:育紅學(xué)校七年級學(xué)生步行郊外旅行,1班的學(xué)生組成前隊,步行速度為4千米/小時,3班的學(xué)生組成后隊,步行速度為6千米/小時,1班出發(fā)一個小時后,3班才出發(fā)。請根據(jù)以上的事實提出問題并嘗試回答。問題1:3班追上1班用了多長時間 ?問題2:3班追上1班時,他們離學(xué)校多遠(yuǎn)?問題3:………………目的:給學(xué)生提供進(jìn)一步鞏固建立方程模型的基本過程和方法的熟悉機會,讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會借線段圖分析行程問題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問題,同時還需注意檢驗方程解的合理性.實際活動效果:由于題目較簡單,所以學(xué)生分析解答時很有信心,且正確率也比較高,同時也進(jìn)一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.
一是先用計算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,為下面的數(shù)學(xué)探險作鋪墊。二是數(shù)學(xué)探險。在這個步驟中,我先出示8個1乘8個1,學(xué)生用計算器計算的答案肯定不一樣,因為學(xué)生帶來的計算器所能顯示的數(shù)位不一樣,而且這些計算器所能顯示的數(shù)位都不夠用,也就是這道題目計算器不能解決。這時我提問:“你覺得問題出在哪兒?是我們錯了,還是計算器錯了?你能想辦法解決嗎?請四人小組討論一下解決方案?!边@樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問題的需要和欲望。在學(xué)生找不到更好的解決方法時,引導(dǎo)學(xué)生向書本請教,完成課本第101頁想想做做的第四題。讓學(xué)生利用計算器算出前5題的得數(shù),引導(dǎo)學(xué)生通過觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個算式,發(fā)展學(xué)生的合情推理能力,同時也讓學(xué)生領(lǐng)略了數(shù)學(xué)的神奇。
②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學(xué)生體會到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡單代數(shù)式賦予實際意義,進(jìn)一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進(jìn)一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學(xué)生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應(yīng)”,直至豁然開朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計為學(xué)生精彩的生成提供了很好的平臺,在實際教學(xué)過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點,及時進(jìn)行引導(dǎo)和激勵,并根據(jù)具體教學(xué)對象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過程真正成為生成教育智慧和增強實踐能力的過程.讓預(yù)設(shè)與生成齊飛.
(六)當(dāng)堂達(dá)標(biāo)(練習(xí)二、三 10分鐘)練習(xí)二讓學(xué)生口答,通過練習(xí),鞏固學(xué)生對直線、射線、線段表示方法的掌握。練習(xí)三讓學(xué)生去黑板板演,教師檢驗對錯并重點強調(diào)幾何語言的表述。文字語言和圖形語言之間的轉(zhuǎn)化是難點,著重練習(xí)文字語言向圖形語言的轉(zhuǎn)化,提高幾何語言的理解與運用能力。當(dāng)堂達(dá)標(biāo)是檢查學(xué)習(xí)效果、鞏固知識、提高能力的重要手段。通過練習(xí),學(xué)生會體驗到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時獲得信息反饋,以便課下查漏補缺。 (七)小結(jié)(3分鐘)教師提問“這節(jié)課我們學(xué)了哪些知識?”請學(xué)生回答,教師做適當(dāng)補充。課堂小結(jié)對一節(jié)課起著“畫龍點晴”的作用,它能體現(xiàn)一節(jié)課所講的知識和數(shù)學(xué)思想。因此,在小結(jié)時,教師引導(dǎo)學(xué)生概括本節(jié)內(nèi)容的重點。
活動目標(biāo)1、探究、發(fā)現(xiàn)各種形狀的紙片在快速轉(zhuǎn)動時都會呈現(xiàn)出圓形。2、在討論、記錄、交流中積累和提升有關(guān)轉(zhuǎn)動的經(jīng)驗。3、樂意針對問題作進(jìn)一步的探究,體驗愉快的情緒和探究的樂趣。 活動準(zhǔn)備1、圓形、橢圓形、三角形、正方形的紙片(中心有小孔)、可制作陀螺的塑料小棒、蠟筆等各若干。2、實物投影儀。3、猜測記錄表人手一張。 活動過程一、導(dǎo)入活動,激發(fā)探究興趣1.投影展示各種圖形,幼兒觀察講述都有哪些圖形和我們玩轉(zhuǎn)陀螺的游戲。2.請幼兒結(jié)合自己的生活經(jīng)驗,說說什么形狀的紙片比較適合做陀螺。 二、在做做、玩玩中發(fā)現(xiàn)圓形的紙片在轉(zhuǎn)動時也是圓形的1、提出制作與觀察的要求:先選一張圓形的紙片把它做成陀螺玩一玩,看看它轉(zhuǎn)動起來是怎樣的。2、幼兒制作、玩耍陀螺,引導(dǎo)幼兒觀察陀螺轉(zhuǎn)動起來是怎樣的。 3、請幼兒說一說陀螺轉(zhuǎn)動起來是怎樣的。幼A:我的陀螺轉(zhuǎn)動起來是歪歪斜斜、搖搖擺擺的。幼B:我的陀螺先是慢慢的,后來越轉(zhuǎn)越快,最后就停下來了。幼C:我的圓形陀螺轉(zhuǎn)起來也是圓形的。幼D:陀螺轉(zhuǎn)動起來它的形狀有點模糊。(評:在這里,教師因勢利導(dǎo),讓幼兒根據(jù)自己的經(jīng)驗先選圓形的紙片制作陀螺,這樣既有利于幼兒習(xí)得制作陀螺的方法,也有利于引導(dǎo)幼兒更多地關(guān)注陀螺在轉(zhuǎn)動時發(fā)生的一系列變化,為下面的環(huán)節(jié)作好鋪墊。) 三、在猜猜、試試、說說中發(fā)現(xiàn)不同形狀的紙片在快速轉(zhuǎn)動時都呈現(xiàn)出圓形1、出示記錄表,介紹記錄方法:“問號”表示想一想,“小手”表示試一試。把我們的猜想畫在問號下面,等一會兒把嘗試后的結(jié)果畫在小手下面。2、讓幼兒猜一猜三角形、橢園形、正方形的紙片轉(zhuǎn)動起來是什么形狀的,并把自己的猜想記錄在表格中。 3、個別介紹自己的猜想。幼A:三角形轉(zhuǎn)動起來是三角形、橢圓形轉(zhuǎn)動起來是橢圓形、正方形轉(zhuǎn)動起來是正方形,不會變的。幼B:它們轉(zhuǎn)動起來都會變成圓形。幼C:轉(zhuǎn)動起來會變成花形。幼D:正方形會變成圓形,三角形還是三角形.(評:“猜測與假設(shè)”有助于激活幼兒的思維。動手前先動腦,幼兒的思維會處于一種激活狀態(tài)+這無疑對發(fā)展幼兒的思維能力起到了重要作用。在這里,我對幼兒的任何猜測都不作評價,而是留待他們在接下來的環(huán)節(jié)中,通過自己的操作來發(fā)現(xiàn)與驗證。)4、實驗驗證并記錄結(jié)果。引導(dǎo)幼兒仔細(xì)觀察不同形狀的紙片在快速轉(zhuǎn)動時是什么形狀的,并把實驗結(jié)果記錄在表格中。
1、數(shù)數(shù)格子,認(rèn)清方向(完成想想做做第1題)設(shè)計意圖:本題在于讓學(xué)生認(rèn)清平移的方向和距離,感受平移的不同方法。在教學(xué)中,讓學(xué)生自己獨立思考完成,自由發(fā)言。鼓勵學(xué)生說出不同的平移方法。2、小試牛刀(完成想想做做第2題)設(shè)計意圖:本題主要是讓學(xué)生掌握按要求畫平移后的圖形。這是本節(jié)課的難點。在教學(xué)中,先讓學(xué)生獨立畫圖,教師巡視作圖情況,對有困難的學(xué)生給予指導(dǎo)。在學(xué)生完成作圖后,投影部分學(xué)生的作品,交流平移的過程與方法。最后在多媒體課件上展示畫法。.3、平移的運用(“想想做做”第3題)設(shè)計意圖:本題在于使學(xué)生學(xué)會運用平移的知識畫平行線,體會平移的價值。(四)課堂小結(jié),升華提高提問:今天你有哪些收獲?設(shè)計意圖:以問題為載體,引領(lǐng)學(xué)生對本節(jié)課的歸來總結(jié)。讓學(xué)生再次理解圖形的斜向平移可轉(zhuǎn)換成橫向平移和豎向平移。
解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價值.
三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達(dá)B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
探究點二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2