如圖,課外數(shù)學(xué)小組要測(cè)量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們?cè)贏處測(cè)得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請(qǐng)你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長(zhǎng),進(jìn)而求出EF的長(zhǎng),得出答案.解:延長(zhǎng)DE交AB延長(zhǎng)線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過(guò)作高或垂線構(gòu)造直角三角形.
如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問題的過(guò)程中往往會(huì)忽略同弧的問題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說(shuō)出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
首先請(qǐng)學(xué)生分析:過(guò)B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來(lái)解.教師可請(qǐng)一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過(guò)評(píng)價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過(guò)數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計(jì)算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計(jì)算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計(jì)算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計(jì)算器一定要注意計(jì)算器說(shuō)明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時(shí),常常使用計(jì)算器幫助我們處理比較復(fù)雜的計(jì)算。
③設(shè)每件襯衣降價(jià)x元,獲得的利潤(rùn)為y元,則定價(jià)為 元 ,每件利潤(rùn)為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤(rùn),最大利潤(rùn)為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤(rùn)最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過(guò)配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測(cè) ☆ 1、用長(zhǎng)為6m的鐵絲做成一個(gè)邊長(zhǎng)為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長(zhǎng)為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場(chǎng)調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤(rùn)=每件的利潤(rùn)×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開口向下,對(duì)稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷售該商品第45天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤(rùn)的計(jì)算方法,即利潤(rùn)=每件的利潤(rùn)×銷售的件數(shù),是解決問題的關(guān)鍵.
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場(chǎng)地所在山坡AE的長(zhǎng)度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長(zhǎng)度,通過(guò)坡度得到∠ECF=30°,通過(guò)平角減去其他角從而得到∠AEF=45°,即可求出AE的長(zhǎng)度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場(chǎng)地所在山坡AE的長(zhǎng)度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
1.培養(yǎng)學(xué)習(xí)語(yǔ)文的興趣,感悟生活處處皆語(yǔ)文的道理。2.了解招牌、廣告詞和對(duì)聯(lián)。3.按興趣分組,制定活動(dòng)計(jì)劃。 一、導(dǎo)入新課師:同學(xué)們,我們學(xué)習(xí)語(yǔ)文都有哪些途徑呢?(生:課本、課堂。)除此之外,老師認(rèn)為還可以通過(guò)以下途徑來(lái)學(xué)習(xí)語(yǔ)文。從媒體中學(xué)語(yǔ)文——網(wǎng)絡(luò)用語(yǔ)、手機(jī)短信、歌詞等;從名字中學(xué)語(yǔ)文——人名、地名等;向群眾學(xué)語(yǔ)文——俗語(yǔ)、諺語(yǔ)、歇后語(yǔ)等;從傳統(tǒng)文化中學(xué)語(yǔ)文——對(duì)聯(lián)……從廣告中學(xué)語(yǔ)文——商業(yè)廣告、公益廣告…… 師:無(wú)論是讀書看報(bào)、與人聊天,還是聽相聲、看電視、逛商場(chǎng),只要留心觀察,隨時(shí)注意語(yǔ)言現(xiàn)象,總會(huì)發(fā)現(xiàn)與語(yǔ)文有關(guān)的問題。書本上、電視上、報(bào)紙上滿是漢字。大街上的招牌、廣告、門對(duì)等全都充滿語(yǔ)文氣息。語(yǔ)文學(xué)習(xí)不能局限于課堂與書本,生活處處有語(yǔ)文。今天,我們就來(lái)開展綜合性學(xué)習(xí)活動(dòng)“我的語(yǔ)文生活”,看看怎樣在生活中學(xué)習(xí)語(yǔ)文。
本文是一篇語(yǔ)言優(yōu)美,充滿兒童情趣和文學(xué)色彩的文章,仿佛呼喚著我們?nèi)ふ掖禾臁N覀兊叫@里找一找,也許能在操場(chǎng)邊發(fā)現(xiàn)剛探出頭的小草;我們到野外去找一找,也許能在天空中發(fā)現(xiàn)飄飄搖搖的風(fēng)箏;打開課本,我們還會(huì)在課本插圖中發(fā)現(xiàn)春天的影子;讀著課文,我們會(huì)感覺自己就是那幾個(gè)脫掉棉襖,沖出家門,奔向田野的孩子,我們還能體會(huì)到尋找春天的急切心情,感受到發(fā)現(xiàn)春天的欣喜。二年級(jí)學(xué)生具有好奇、愛探索、易受感染的心理特點(diǎn),容易被新鮮的事物、活動(dòng)的東西所吸引。在一年半的語(yǔ)文學(xué)習(xí)后,他們已經(jīng)能夠說(shuō)一段較完整的話,并能在教師創(chuàng)設(shè)的情境中體驗(yàn)、感受,達(dá)到情感的共鳴,同時(shí)也積累了不少生活素材,這些都是學(xué)習(xí)本課的有利因素。
本課采用任務(wù)型教學(xué)法,用What would you do if you had a million dollars?這個(gè)問句,引出談?wù)摷傧肭闆r的話題。 采用提問、啟發(fā)和歸納的教法,讓學(xué)生易于接受教材內(nèi)容,培養(yǎng)學(xué)生的語(yǔ)言運(yùn)用能力。 四、 教學(xué)過(guò)程設(shè)計(jì) Step Ⅰ. Greet the whole class as usual. Step Ⅱ. Warming-up T: Do you have ten Yuan in your pocket? S1: No, I don’t. T: (Take out ten Yuan and give it to the student) OK, never mind. What would you do if it was yours? What would you do if you had ten Yuan? S1: I would buy snacks. T: OK, thank you. Sit down, please. (To the whole class) Just now, it was only ten Yuan. What about 100 Yuan? What would you doif you had 100 Yuan? S2: I’d buy a beautiful jacket. T: Thank you. (To the whole class) Now suppose you had a million dollars, what would you do? We know thatone dollar nearly equals eight Yuan, so that’s a large sum of money. Think it over carefully and tellme your ideas. What would you do if you had a million dollars? S3: I’d buy a big house. S4: I’d buy a sports car. S5: I’d put it in the bank. T: OK, stop here. Please look at the blackboard and guess what would I do if I had a million
二、說(shuō)學(xué)情學(xué)生是課堂的主體,教師應(yīng)本著“因材施教”的理念結(jié)合學(xué)生的基本情況進(jìn)行備課。九年級(jí)的學(xué)生已經(jīng)有了較好的積累,基本詞匯、常見修辭等等都有了較為自如的把握。對(duì)于詩(shī)歌這種文體,他們已接觸過(guò)很多年。但由于對(duì)詩(shī)歌這種文體的情感把握還不夠精準(zhǔn)到位。此外,這一階段的學(xué)生已經(jīng)有了一定的寫作和口語(yǔ)表達(dá)能力,我將在本文的教學(xué)過(guò)程中設(shè)置口語(yǔ)表達(dá)及寫作的環(huán)節(jié),學(xué)生可通過(guò)實(shí)踐進(jìn)一步強(qiáng)化這方面的能力。三、說(shuō)教學(xué)目標(biāo)因此,基于教材和學(xué)情,我從課程標(biāo)準(zhǔn)中“全面提高學(xué)生語(yǔ)文素養(yǎng)”的基本理念出發(fā),設(shè)計(jì)了以下三個(gè)維度的教學(xué)目標(biāo):1.知識(shí)與能力:結(jié)合注釋解釋全文大意,并能初步體會(huì)是中蘊(yùn)含的情感。2.過(guò)程與方法:通過(guò)有感情地朗讀、獨(dú)立思考、討論、對(duì)文章中關(guān)鍵內(nèi)容的探究等過(guò)程,體會(huì)文章語(yǔ)言的優(yōu)美和表達(dá)的精妙。3.情感態(tài)度與價(jià)值觀:懂得詩(shī)人重新投入生活的意愿及堅(jiān)韌不拔的意志。
圖文對(duì)照,讀中感悟1.學(xué)習(xí)第1、2自然段。師:要去野外找春天了,課文中的小朋友現(xiàn)在是懷著什么樣的心情呢?(高興的、急切的、激動(dòng)的)請(qǐng)你也帶著這樣的心情讀一讀第一、二自然段吧?自由讀。指名讀本段,讀后評(píng)價(jià)悟出應(yīng)把“脫”、“沖”、“奔”重讀才能更加體現(xiàn)出孩子們找春天的迫切心情。2.請(qǐng)大家自由讀第3 ~7自然段,想一想,作者把春天想象成什么了(一個(gè)害羞的小姑娘)。這個(gè)害羞的小姑娘,遮遮掩掩、躲躲藏藏的,不想讓人們發(fā)現(xiàn)她??墒羌?xì)心的小朋友還是找到了她。這些小朋友都在哪找到她了?你知道嗎?從書中找到有關(guān)的句子再讀一讀。(學(xué)生邊畫、邊讀。)小草從地下探出頭來(lái),那是春天的眉毛吧?早開的野花一朵兩朵,那是春天的眼睛吧?樹林吐出點(diǎn)點(diǎn)嫩芽,那是春天的音符吧?解凍的小溪丁丁咚咚,那是春天的琴聲吧?
指導(dǎo)寫字 覺:“學(xué)”下面的的“子”換成“見”?! ∫梗旱谒墓P是“豎”,不要寫成“豎鉤”。注意指導(dǎo)筆順,提示不要漏寫第七筆“點(diǎn)”??膳c熟字“衣”比較字形的異同。 雨:仿佛隔窗觀雨。里面左右各兩點(diǎn),上下排列,像檐下滴水?! ÷暎荷厦媸恰笆俊保皇恰巴痢薄O旅娴淖詈笠还P是“丿”,不是“豎彎鉤”,不能寫成“巴”。 知:左邊是把“午”的“豎”改撇,再加一點(diǎn)。右邊是“口”表示知道了要用口說(shuō)出來(lái)。 少:上面與“小”不同,第一筆是豎,沒有鉤。
朗讀(讀說(shuō)思議練結(jié)合,培養(yǎng)學(xué)生語(yǔ)文綜合能力。) 1、學(xué)習(xí)第一小節(jié): ?。?)指名讀,回憶剛才摸鳥蛋的感覺(小小的、涼涼的)體會(huì)著讀一讀。 ?。?)比較“鳥蛋涼涼的”和“涼涼的鳥蛋”:你發(fā)現(xiàn)了什么?(引導(dǎo)學(xué)生發(fā)現(xiàn)這類詞語(yǔ)的特點(diǎn):詞序不同,但表達(dá)的意思相同。)除了涼涼的鳥蛋還有什么是涼涼的? ?。?)你還能像這樣再說(shuō)幾個(gè)嗎? (如果學(xué)生說(shuō)不出來(lái),教師可進(jìn)行指導(dǎo),把寫有“花兒、小草、柳枝、大海,紅紅的、綠綠的、軟軟的、藍(lán)藍(lán)的”的詞語(yǔ)卡分給學(xué)生,讓擁有不同詞語(yǔ)的學(xué)生去找朋友,再讓兩個(gè)朋友變換左右順序。) 2、學(xué)習(xí)第二小節(jié): ?。?)輕聲讀文,思考:你怎么知道兩只鳥蛋就是兩只小鳥? ?。?)出示小鳥破殼的圖片或課件,引導(dǎo)學(xué)生說(shuō)一說(shuō)。 ?。?)啟發(fā)想象:鳥媽媽焦急不安是什么樣?你能表演一下嗎? 表演后試著把媽媽的語(yǔ)氣讀出來(lái)。 ?。?)你還能用焦急不安說(shuō)句話嗎?看誰(shuí)說(shuō)得和別人不一樣?
讀文感悟。 1、出示:鄧小平爺爺( )地種柏樹。 師:同學(xué)們帶著這個(gè)問題仔細(xì)讀課文,用“——”劃出有關(guān)句子。然后想一想,“( )”里填什么詞比較恰當(dāng)?! ?、生自由讀課文,邊讀邊劃?! ?、 全班匯報(bào)交流?! 煟耗阏J(rèn)為鄧小平爺爺( )地種柏樹,從哪些地方體現(xiàn)出來(lái)? ?。ㄒ宰x為主,引導(dǎo)學(xué)生學(xué)會(huì)讀課文,尊重學(xué)生個(gè)性化的理解?!埃?)”里可填“起勁、仔細(xì)、認(rèn)真、一絲不茍、小心”等等,隨機(jī)進(jìn)行讀文,結(jié)合語(yǔ)言文字訓(xùn)練,體會(huì)鄧小平爺爺積極為祖國(guó)綠化作貢獻(xiàn)的精神。) (如:找出鄧小平爺爺種樹的動(dòng)作詞“挖、挑選、移、填、站在、扶正”,同桌伙伴,一人做動(dòng)作,一人口述植樹過(guò)程?!耙啤弊挚蓳Q“放”字比較理解。) 4、 四人小組討論:鄧小平爺爺為什么種樹?他是怎么想的? (結(jié)合課前收集的鄧小平爺爺?shù)馁Y料理解,體會(huì)鄧小平爺爺一心為國(guó)之心,激發(fā)學(xué)生參與綠化的熱情。)
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。