(二)解決問題,總結(jié)方法《新課程標(biāo)準(zhǔn)》主張充分挖掘數(shù)學(xué)教材潛在的“再創(chuàng)造空間”,讓學(xué)生親自經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,讓學(xué)生最大限度地參與數(shù)學(xué)知識的發(fā)現(xiàn)、提出、形成、應(yīng)用的再創(chuàng)造過程,以促進(jìn)學(xué)生主動的發(fā)展。因此我創(chuàng)設(shè)了福娃晶晶為迎接奧運(yùn)會做準(zhǔn)備的數(shù)學(xué)情景,設(shè)計了四組有關(guān)7、8、9的用除法算式解決的數(shù)學(xué)問題。1、出示晶晶的問題:(1)做了56面彩旗,平均每行掛7面,能掛多少行?(2)做了56面彩旗,要掛成8行,平均每行掛多少面?(3)做了49顆五角星,平均分給7個小朋友,每人多少顆五角星?(4)準(zhǔn)備了27個氣球,平均9個擺一行,能擺多少行?2、解決晶晶的問題:讓學(xué)生根據(jù)"友情提示"的要求完成自學(xué)內(nèi)容后再小組交流、全班交流。在交流過程中引導(dǎo)學(xué)生觀察:56÷8=7和56÷7=8這兩個算式,從而發(fā)現(xiàn)一句乘法口訣可以計算兩個除法算式。
一、教材分析“商中間、末尾有0的除法”是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材數(shù)學(xué)三年級下冊第二單元“除數(shù)是一位數(shù)的除法”的最后一部分內(nèi)容。屬于“數(shù)與代數(shù)”的知識領(lǐng)域的數(shù)的計算。例6是其中“被除數(shù)哪一位上的數(shù)是0且前面沒有余數(shù)時要在商這一位上寫0”的情況。在這一例題之前,教材先安排了“基本的筆算除法”和“除法的驗(yàn)算”內(nèi)容。因此,在學(xué)習(xí)本例題之前,學(xué)生對“除數(shù)是一位數(shù)的除法”的算理、算法已經(jīng)基本掌握,因此有了一定的基礎(chǔ)?!吧讨虚g、末尾有0的除法”只是除法中的特殊情況,是除法計算法則的補(bǔ)充,也是這一單元的難點(diǎn)內(nèi)容。關(guān)鍵是讓學(xué)生親歷“0占位”的思維過程,為以后四年級學(xué)習(xí)“除數(shù)是兩位數(shù)或多位數(shù)”的除法奠定基礎(chǔ)。
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個向量相當(dāng)于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
1、教材地位:《加法運(yùn)算定律的應(yīng)用》這節(jié)內(nèi)容是在前面學(xué)習(xí)了加法交換律及加法結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。它是加法兩個運(yùn)算定律在實(shí)際生活的應(yīng)用,同時也為后面進(jìn)行簡便計算打下一定的基礎(chǔ)。教材中改變了改變了以往簡便計算以介紹算法技巧為主的傾向,著力引導(dǎo)學(xué)生將簡便計算應(yīng)用于解決現(xiàn)實(shí)生活中的實(shí)際問題,讓學(xué)生借助于解決實(shí)際問題,進(jìn)一步體會和認(rèn)識運(yùn)算定律。同時注意解決問題策略的多樣化。這對發(fā)展學(xué)生思維的靈活性,提高學(xué)生分析問題、解決問題的能力,都有一定的促進(jìn)作用。它是在例2已經(jīng)計算了李叔叔前3天所行路程和的基礎(chǔ)上,給出李叔叔后四天的行程計劃,讓學(xué)生求4天計劃行程的和。教材中設(shè)計的四個加數(shù),其中兩個可以湊成整百數(shù),另兩個可以湊成整十?dāng)?shù),旨在讓學(xué)生將前面所學(xué)的兩條加法運(yùn)算定律,綜合運(yùn)用到解決實(shí)際問題的計算中。
尊敬的各位領(lǐng)導(dǎo)、老師:大家好!我今天說課的內(nèi)容是人教版小學(xué)數(shù)學(xué)三年級下冊第四單元《兩位數(shù)乘兩位數(shù)的不進(jìn)位筆算》一課,我將從以下幾個方面對本課進(jìn)行闡述:一、說教材《兩位數(shù)乘兩位數(shù)的不進(jìn)位筆算》是人教版小學(xué)數(shù)學(xué)三年級下冊第四單元的教學(xué)內(nèi)容。這部分內(nèi)容是在筆算兩、三位數(shù)乘一位數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的,只是把第二個因數(shù)擴(kuò)展到了兩位數(shù)。兩位數(shù)乘兩位數(shù)的不進(jìn)位筆算重點(diǎn)要解決的是乘的順序問題和第二部分積的書寫位置問題,使學(xué)生掌握基本的乘法筆算方法。為學(xué)習(xí)兩位數(shù)乘兩位數(shù)的進(jìn)位筆算、多位數(shù)乘多位數(shù)的筆算打基礎(chǔ)。因此,本課是是本單元的重點(diǎn),對今后進(jìn)一步的學(xué)習(xí)起著舉足輕重的作用。二、說教學(xué)目標(biāo)教學(xué)目標(biāo)是教材的出發(fā)點(diǎn)和歸宿,也是檢查教學(xué)效果的標(biāo)準(zhǔn)和尺度。從教育學(xué)的角度來講教學(xué)目標(biāo)應(yīng)在基礎(chǔ)知識、能力培養(yǎng)、思想品質(zhì)三方面進(jìn)行明確。所以本節(jié)課的教學(xué)目標(biāo)是:
(二)教材分析《分?jǐn)?shù)和小數(shù)的互化》是在學(xué)生學(xué)習(xí)了分?jǐn)?shù)的意義分?jǐn)?shù)與除法的關(guān)系和分?jǐn)?shù)的基本性質(zhì)的基礎(chǔ)上教學(xué)的。學(xué)習(xí)這部分內(nèi)容是為以后學(xué)習(xí)分?jǐn)?shù)和小數(shù)的混合運(yùn)算打下基礎(chǔ)。例1是教學(xué)小數(shù)化分?jǐn)?shù)。教材突出“先把小數(shù)化成分母為10、100、1000……的分?jǐn)?shù)再寫成最簡分?jǐn)?shù)”這一轉(zhuǎn)化過程。例2時教學(xué)6個數(shù)的大小比較,從中學(xué)習(xí)如何把分?jǐn)?shù)化小數(shù),教材按照已掌握的分?jǐn)?shù)與除法的關(guān)系和分?jǐn)?shù)的基本性質(zhì),提出問題引導(dǎo)學(xué)生想出多種方法把分?jǐn)?shù)化成小數(shù)。本節(jié)課的內(nèi)容,體現(xiàn)了數(shù)學(xué)知識的內(nèi)在聯(lián)系,學(xué)生通過學(xué)習(xí)這部分知識,將為今后學(xué)習(xí)分?jǐn)?shù)與小數(shù)的混合運(yùn)算打下良好的基礎(chǔ)。(三)教學(xué)目標(biāo)1.知識目標(biāo):是學(xué)生理解并掌握分?jǐn)?shù)和小數(shù)、小數(shù)和分?jǐn)?shù)互化的方法,能正確地進(jìn)行分?jǐn)?shù)與小數(shù)、小數(shù)與分?jǐn)?shù)之間的互化。2.能力目標(biāo):培養(yǎng)學(xué)生的觀察、歸納和概括能力。3.情感目標(biāo):體驗(yàn)合作學(xué)習(xí)的快樂,感受數(shù)學(xué)在生活中的應(yīng)用價值,滲透“事物之間互相聯(lián)系、互相轉(zhuǎn)化”的辯證唯物主義思想。
三、總結(jié)規(guī)律、形成概念通過學(xué)生積極討論,充分調(diào)動了學(xué)生的積極參與學(xué)習(xí),既發(fā)揮了學(xué)生學(xué)習(xí)的主動性,又培養(yǎng)了學(xué)生的發(fā)散性思維,引導(dǎo)學(xué)生總結(jié)出:有的分?jǐn)?shù)可以化成有限小數(shù),有的分?jǐn)?shù)不可以化成有限小數(shù),請同學(xué)們再看一看什么樣的分?jǐn)?shù)可以化成有限小數(shù)?什么樣的分?jǐn)?shù)不可以化成有限小數(shù)?啟發(fā)學(xué)生從分母的最小公倍數(shù)著手。 最后總結(jié)出:一個最簡分?jǐn)?shù),如果分母中只含有素因數(shù)2和5,再無其它素因數(shù),那么這個分?jǐn)?shù)就可以化成有限小數(shù),否則就不能化成有限小數(shù)。 例題2,請把下列小數(shù)化成分?jǐn)?shù),說說你是怎樣把小數(shù)化成分?jǐn)?shù)的? 0.06,0.4,1.8,2.45,1.465, 歸納:(學(xué)生為主,教師點(diǎn)撥)1、原來有幾位小數(shù),就在1后面寫幾個零作分母。原來的小數(shù)去掉小數(shù)點(diǎn)作分子。2、小數(shù)化成分?jǐn)?shù)后,能約分的要約分。常用的因數(shù)是2和5。 對于小數(shù)如何化成分?jǐn)?shù)的題目,課前了解到學(xué)生在小學(xué)時已學(xué)過把小數(shù)如何化成分?jǐn)?shù)的方法,因而以學(xué)生練習(xí)為主,加以操練并鞏固,有錯誤的及時糾正。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關(guān)的問題.課程目標(biāo)1、通過實(shí)際問題了解對數(shù)函數(shù)的實(shí)際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)對數(shù)函數(shù)概念.重點(diǎn):理解對數(shù)函數(shù)的概念和意義;難點(diǎn):理解對數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長時間呢?進(jìn)一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。在類比推理的過程中,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認(rèn)識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過正弦、余弦圖象圖像,解決不等式問題及零點(diǎn)問題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.
指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)冪函數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納指數(shù)函數(shù)的概念,通過函數(shù)的三個特征解決一些與函數(shù)概念有關(guān)的問題.課程目標(biāo)1、通過實(shí)際問題了解指數(shù)函數(shù)的實(shí)際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)指數(shù)函數(shù)概念.重點(diǎn):理解指數(shù)函數(shù)的概念和意義;難點(diǎn):理解指數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入在本章的開頭,問題(1)中時間 與GDP值中的 ,請問這兩個函數(shù)有什么共同特征.要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
計算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計算結(jié)果的裝置。顯示器因計算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個鍵上,都標(biāo)明了這個鍵的功能。我們看鍵盤上標(biāo)有的鍵,是開機(jī)鍵,在開始使用計算器時先要按一下這個鍵,以接通電源,計算器的電源一般用5號電池或鈕扣電池。再看鍵,是關(guān)機(jī)鍵,停止使用計算器時要按一下這個鍵,來切斷計算器的電源,是清除鍵,按一下這個鍵,計算器就清除當(dāng)前顯示的數(shù)與符號。的功能是完成運(yùn)算或執(zhí)行命令。是運(yùn)算鍵,按一下這個鍵,計算器就執(zhí)行加法運(yùn)算。
【教學(xué)重點(diǎn)】直線的點(diǎn)斜式方程、斜截式方程的確定.【教學(xué)難點(diǎn)】直線的點(diǎn)斜式方程、斜截式方程的確定.【教學(xué)過程】1、對特殊三角函數(shù)進(jìn)行鞏固復(fù)習(xí);表1 內(nèi)特殊三角函數(shù)值 不存在圖1 特殊三角形2、鞏固復(fù)習(xí)直線的傾斜角和斜率相關(guān)內(nèi)容;直線的傾斜角:,;直線的斜率: , ;設(shè)點(diǎn)為直線l上的任意兩點(diǎn),當(dāng)時,
【教學(xué)目標(biāo)】知識目標(biāo):理解直線的點(diǎn)斜式方程、斜截式方程、橫截距、縱截距的概念;掌握直線的點(diǎn)斜式方程、斜截式方程的確定.能力目標(biāo):通過求解直線的點(diǎn)斜式方程和斜截式方程,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力與數(shù)形結(jié)合的數(shù)學(xué)思想.情感目標(biāo):通過學(xué)習(xí)直線的點(diǎn)斜式方程和斜截式方程,體會數(shù)形結(jié)合的直觀感受.【教學(xué)重點(diǎn)】直線的點(diǎn)斜式方程、斜截式方程的確定.【教學(xué)難點(diǎn)】直線的點(diǎn)斜式方程、斜截式方程的確定.
2.過程與方法 通過研究三角形、四邊形的內(nèi)角和,讓學(xué)生經(jīng)歷觀察、思考、推理、歸納的過程,滲透猜想--驗(yàn)證--結(jié)論--運(yùn)用的學(xué)習(xí)方法,培養(yǎng)學(xué)生動手操作和合作交流的能力,增強(qiáng)學(xué)生的主體探究意識。3.情感態(tài)度與價值觀 培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂?!窘虒W(xué)重點(diǎn)】 引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題;通過量、拼、算等探究活動,使學(xué)生了解任意四邊形的內(nèi)角和都是3600 。【教學(xué)難點(diǎn)】 用不同方法驗(yàn)證三角形的內(nèi)角和是180°;引導(dǎo)學(xué)生利用轉(zhuǎn)化的方法把四邊形或多邊形轉(zhuǎn)化成三角形,發(fā)現(xiàn)多邊形的邊數(shù)與內(nèi)角和之間的關(guān)系?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法。【課前準(zhǔn)備】多媒體、不同類型的三角形各一個、量角器。
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過配方法求出二次函數(shù)的最值。☆ 達(dá)標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
一個數(shù)各個位上的數(shù)字之和如果是3的倍數(shù),那么,這個數(shù)一定是3的倍數(shù)。否則,這個數(shù)就不是3的倍數(shù)。4、檢驗(yàn)結(jié)論。(1)我們從100以內(nèi)的數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?(2)利用100以內(nèi)數(shù)表來驗(yàn)證。(3)延伸到三位數(shù)或更大的數(shù)。如:573、753、999、1236、2244、7863……(4)學(xué)生自己寫數(shù)并驗(yàn)證,然后小組交流,觀察得出的結(jié)論是否相同。在本環(huán)節(jié),我用充足的時間讓小組代表上講臺展示成果,說出各自的思考過程,對學(xué)生的回答我給予充分的肯定和表揚(yáng),引導(dǎo)學(xué)生驗(yàn)證自己的發(fā)現(xiàn)是否正確,最后達(dá)成共識:一個數(shù)的各位上的數(shù)的和是3的倍數(shù),這個數(shù)就3的倍數(shù)(板書)。這樣便巧妙地突出本課的重點(diǎn),突破了本課的難點(diǎn)。