提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

拓展培訓心得體會

  • 【高教版】中職數(shù)學拓展模塊:3.4《二項分布》教案設計

    【高教版】中職數(shù)學拓展模塊:3.4《二項分布》教案設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.4 二項分布. *創(chuàng)設情境 興趣導入 我們來看一個問題:從100件產(chǎn)品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次數(shù)用表示,求離散型隨機變量的概率分布. 由于是有放回的抽取,所以這種抽取是是獨立的重復試驗.隨機變量的所有取值為:0,1,2,3.顯然,對于一次抽取,抽到不合格品的概率為0.03,抽到合格品的概率為1-0.03.于是的概率(僅求到組合數(shù)形式)分別為: , , , . 所以,隨機變量的概率分布為 0123P 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 10*動腦思考 探索新知 一般地,如果在一次試驗中某事件A發(fā)生的概率是P,隨機變量為n次獨立試驗中事件A發(fā)生的次數(shù),那么隨機變量的概率分布為: 01…k…nP…… 其中. 我們將這種形式的隨機變量的概率分布叫做二項分布.稱隨機變量服從參數(shù)為n和P的二項分布,記為~B(n,P). 二項分布中的各個概率值,依次是二項式的展開式中的各項.第k+1項為. 二項分布是以伯努利概型為背景的重要分布,有著廣泛的應用. 在實際問題中,如果n次試驗相互獨立,且各次實驗是重復試驗,事件A在每次實驗中發(fā)生的概率都是p(0<p<1),則事件A發(fā)生的次數(shù)是一個離散型隨機變量,服從參數(shù)為n和P的二項分布. 總結(jié) 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

  • 領導在考評員培訓工作網(wǎng)絡視頻會議上的講話范文_圖片

    領導在考評員培訓工作網(wǎng)絡視頻會議上的講話范文_圖片

    專項能力考評工作是對專項能力評價的核心活動??荚u人員是專項技能認定活動中最重要的要素之一??荚u人員是評價活動的實施者和評判者,其考評行為直接決定著評價的質(zhì)量。通過各種不同形式的培訓,提高考評人員的技術(shù)業(yè)務素質(zhì),加強職業(yè)道德教育??傊ㄟ^不斷努力,建設一支“科學嚴謹、開拓進取、務實高效、公正廉潔”的考評人員隊伍,保證技能人才評價工作的質(zhì)量。目前專項能力的考評是有區(qū)域限制的,但是因該項技術(shù)的專利和唯一性,全國各地都有需求,所以我們要求參照職業(yè)技能鑒定的標準嚴格把握各項工作要求和工作流程,才能在全國范圍更好地推廣,所以對考評員的要求就要更高??荚u員要在規(guī)定的專項等級范圍內(nèi),依據(jù)技能標準或評價規(guī)范,對專項技能等級認定對象的知識、技能和工作業(yè)績進行考核、評審。要求考評人員必須忠于職守,公正廉潔,具有社會責任感和法紀意識,有本職業(yè)精湛的技藝和豐富的經(jīng)驗,才能把好質(zhì)量關,更好地為參評人員服務、為社會服務。

  • 在領導干部個人有關事項報告專題培訓會上的講話

    在領導干部個人有關事項報告專題培訓會上的講話

    這次專題培訓,就是進一步提高認識,打牢思想基礎,學好學通政策規(guī)定,杜絕人為失誤。待會兒,XXX同時將結(jié)合兩項法規(guī),就領導干部個人有關事項報告查核結(jié)果處理案例專題講解。組織部要帶頭學深學透、精通政策,切實發(fā)揮好指導、服務、幫助作用。全體處級干部要認真領會,要原原本本、逐字逐句認真研讀兩項法規(guī)精神和《領導干部個人有關事項報告表》各項內(nèi)容,確保報告內(nèi)容全面、真實、準確,符合規(guī)定要求。

  • 高校教育工作總結(jié)表彰暨教學能力培訓會講話大學學院

    高校教育工作總結(jié)表彰暨教學能力培訓會講話大學學院

    一要始終秉持教學第一位的本位意識。思政教育、專業(yè)教育、x教育、知行教育、實踐教育、工程教育,這些所有的模塊構(gòu)成了我們學校人才培養(yǎng)體系,大家要始終秉持教學本位的理念,深刻研判國家、社會、學校人才培養(yǎng)的新形勢和新要求,不斷探索前沿高等教育先進的教學理念和教學方法,持續(xù)推進我校教育體系的完善與創(chuàng)新。二要加強團隊協(xié)作。x教育建設并非閉門造車,我們在新工科新文科協(xié)同發(fā)展理念引導下,大力扶持文理滲透、理工交融的學科交叉融合,整合校內(nèi)多學科資源,建立開放、共享、交叉、融合的x教育課程體系,這已成為我們學校x教育建設導向,所以更需要大家加強團隊協(xié)作,體現(xiàn)產(chǎn)教融合科教融匯、有組織科研有組織教研的一些集中成果。三要認真踐行課堂革命教學改革。x教育是人才培養(yǎng)的主戰(zhàn)場之一,也是教學改革的重要突破口。希望我們的老師從x教育改革出發(fā),又反哺回專業(yè)教育、工程教育。

  • 校領導在2024年XX教育工作總結(jié)表彰暨教學能力培訓會上的講話

    校領導在2024年XX教育工作總結(jié)表彰暨教學能力培訓會上的講話

    最后,也借這個機會,向大家三點工作的要求:1.要始終秉持教學第一位的本位意識思政教育、專業(yè)教育、XX教育、知行教育、實踐教育、工程教育,這些所有的模塊構(gòu)成了我們學校人才培養(yǎng)體系,大家要始終秉持教學本位的理念,深刻研判國家、社會、學校人才培養(yǎng)的新形勢和新要求,不斷探索前沿高等教育先進的教學理念和教學方法,持續(xù)推進我校教育體系的完善與創(chuàng)新。2.XX教育應加強團隊協(xié)作XX教育建設并非閉門造車,我們在新工科新文科協(xié)同發(fā)展理念引導下,大力扶持文理滲透、理工交融的學科交叉融合,整合校內(nèi)多學科資源,建立開放、共享、交叉、融合的XX教育課程體系,這已成為我們學校XX教育建設導向,所以更需要大家加強團隊協(xié)作,體現(xiàn)產(chǎn)教融合科教融匯、有組織科研有組織教研的一些集中成果。3.認真踐行課堂革命教學改革

  • 某D員干部在城市治理現(xiàn)代化專題培訓總結(jié)會上的發(fā)言

    某D員干部在城市治理現(xiàn)代化專題培訓總結(jié)會上的發(fā)言

    要堅持點上用力,大力倡樹“細部工作、點上用力、實處見效”的作風。要做到心中有數(shù),要定好時間表、路線圖,細化每月、每周、每天的計劃,一件一件地抓實,一件一件地抓成。持續(xù)探索城市精細化管理工作,深入推進各類垃圾綜合治理,加大水環(huán)境治理力度,做好供水和防污治理,全面提升市政市容管理,完善城市網(wǎng)格化管理,推進城市綜合管理標準體系建設,打造一批高水平高素質(zhì)的城管隊伍。終為民,走好群眾路線。人民群眾是歷史的創(chuàng)造者,是國家最堅實的根基,是D執(zhí)政最大的底氣。要多為群眾辦實事,始終把群眾呼聲作為第一信號、把群眾需要作為第一選擇、把群眾滿意作為第一標準,緊盯群眾最惦念、最揪心的問題,下大氣力去認真解決,真心實意為群眾辦實事、解難事、做好事。

  • 領導在集團新員工培訓開班儀式上的講話范文

    領導在集團新員工培訓開班儀式上的講話范文

    集團所屬各公司將對校園招聘新進員工進行重點培養(yǎng),積極為新進員工提供鍛煉的機會和成長的平臺,指定優(yōu)秀干部作為導師,一對一幫扶。定期開展談心談話活動,跟蹤掌握新進員工的思想動態(tài)和工作狀況,及時向集團匯報新進員工的發(fā)展進步。為集團建設發(fā)展構(gòu)建完善的人才梯隊,形成人人成才、人盡其才的良好局面,讓集團放心,讓員工滿意

  • 培訓機構(gòu)疫情防控工作方案和應急預案

    培訓機構(gòu)疫情防控工作方案和應急預案

    (一)開學前期準備1、做好人員(學生、家長、老師、員工)排查尤其窗口期防控工作,努力將疫情阻隔在機構(gòu)之外,為正式開學打下堅實基礎。2、采購、備齊開學必需物品:一次性醫(yī)用外科口罩、額溫槍、消毒液等。3、進行一次全方位安全大檢查,防止因放假未用產(chǎn)生安全事故。4、辦公室、教室、宿舍、食堂等場所噴霧消毒。5、制定食堂運轉(zhuǎn)詳細方案,嚴查食堂工作人員身體健康狀況,嚴控食品進貨渠道,嚴管食品進入校區(qū)流程。

  • 公司新員工培訓活動總結(jié)匯報范文三篇

    公司新員工培訓活動總結(jié)匯報范文三篇

    說真的,在沒有培訓之前。我正處于迷茫之中,不知道怎么著手去開展工作。通過三天的培訓,我學到了很多新的知識。懂得了許多做人的道理,也改變了原來的一些觀念。使我找到了新的起跑點。  培訓的前兩天,由人事部周經(jīng)理給我們授課,讓我們了解了酒店的職業(yè)道德,酒店從業(yè)心理與心態(tài),學習了有聲微笑服務與酒店行體規(guī)范,酒店禮儀及酒店意識與服務意識,酒店員工手冊和行為規(guī)范。而且保安部余經(jīng)理還教了我們許多消防知識。許多都是我們終生受益的知識,既教會了我們做事,還教會我們?nèi)绾巫鋈?,心態(tài)決定一切!我們應懂得“批評是金,表揚是銀”。如果犯錯,不可逃避,應正確對待,成年人要懂得為自己所做的事負責,不可消極對待?!叭巳藶槲?,我為人人”。想想我們每天為別人服務,同時也得到別人的服務,所以我們服務于人時,要換位思考,以心換心,主動、熱情、耐心地對待我們的客人,服務周到``````  培訓的第三天,人事部周經(jīng)理組織我們?nèi)w新員工去清水彎休閑山莊進行了一次有趣的燒烤活動。同事們在一起玩得很開心,通過這次燒烤活動讓同事之間多了一次相互了解的機會,體會到團隊協(xié)作能力的重要性。不必總束縛在酒店的環(huán)境里,可以在新的環(huán)境中體會大家良好的關系。讓大家真正有一種大家庭生活的感覺,感到多么的親切,并且可以讓同事們呼吸新鮮空氣,又可以增進感情。希望我們?nèi)w同仁能夠珍惜大家一起工作的機會?! ≡谖覜]有聽這幾天課之前,雖然我在工作中也很努力,但我卻始終感受不到它們真正的含義,更體會不到服務給我?guī)矶嗌倏鞓罚瑑晌焕蠋煹木适谡n,無一不感染著我們當時在座的每一位,讓我受益非淺!

  • 關于某區(qū)XX小學教師培訓工作總結(jié)

    關于某區(qū)XX小學教師培訓工作總結(jié)

    此外,以研訓項目包和名師工作室為平臺,開展教師學科交流研討活動、讀書分享、聽專家講座等活動。這樣,有效地促進了教師專業(yè)素養(yǎng)的提高??傊?,我們通過豐富多彩的教學研究活動,積極探索行之有效的新課程實施模式,優(yōu)化我校的課堂教學,促進教育教學質(zhì)量的鞏固與提高。三、取得的成績我校建校4個月以來,教師在區(qū)級教育主管部門組織開展的論文評選中,獲獎達9篇,在區(qū)級教育主管部門組織的教壇新星評選活動中,我校2名教師獲得此項榮譽。四、存在問題我校積極開展校本培訓活動,但也存在一些不足,有待改進,具體表現(xiàn)在:二級培訓的質(zhì)量有待提高;教學研究成果需繼續(xù)加強;校本培訓課程開發(fā)要有深度。五、今后工作通過本學期的教師培訓,促進了教師專業(yè)成長。針對以上存在的不足,我校將采取措施,完善工作,為建設業(yè)務精良的教師隊伍而不懈努力。

  • 【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1)  (1.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結(jié) 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案設計

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案設計

    教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結(jié)為解三角形問題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點

  • 【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設計

    【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教案

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關系呢? c 圖1-7 當三角形為鈍角三角形時,不妨設角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標系,則 兩邊取與單位向量的數(shù)量積,得 由于設與角A,B,C相對應的邊長分別為a,b,c,故 即 所以 同理可得 即 當三角形為銳角三角形時,同樣可以得到這個結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細分析講解 總結(jié) 歸納 詳細分析講解 思考 理解 記憶 理解 記憶 帶領 學生 總結(jié) 20

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結(jié)為解三角形問題,經(jīng)常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40

  • 【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上海→重慶. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設計

    【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設計

    一、定義:  ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 人教版高中歷史必修2殖民擴張與世界市場的拓展教案

    人教版高中歷史必修2殖民擴張與世界市場的拓展教案

    ●活動與探究從葡萄牙、西班牙、荷蘭的興衰歷程,從英國的強盛歷程,我們從中可獲得什么啟示?啟示:積極發(fā)展本國的工商業(yè);實現(xiàn)制度創(chuàng)新;抓住機遇,及時更新觀念;建立能保障自身經(jīng)濟順利發(fā)展的國防力量,尤其是海軍力量;積極發(fā)展海外貿(mào)易,實行對外開放……★本課小結(jié)16世紀后期荷蘭積極向海外殖民擴張,在17世紀建立了世界范圍內(nèi)的殖民帝國;17世紀開始,英國也積極向海外殖民擴張,并與荷蘭、法國進行了激烈的爭奪,到18世紀中期,英國成為世界上最大的殖民國家,最終確立了世界殖民霸權(quán);新航路開辟后,伴隨著殖民擴張,人類的商業(yè)活動開始在全球范圍內(nèi)開展,人類的經(jīng)濟活動由于世界市場的出現(xiàn)而第一次被廣泛地聯(lián)系在一起,而西歐國家對殖民地財富、資源、勞動力的暴力掠奪,是歐洲發(fā)展和興旺的重要條件,也是亞、非、拉美災難的根源。

  • 【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設計

    【高教版】中職數(shù)學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設情境 興趣導入 問題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 5*動腦思考 探索新知 由同角三角函數(shù)關系,知 , 當時,得到 (1.5) 利用誘導公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應使式子的左右兩端都有意義. 總結(jié) 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 15*鞏固知識 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進行轉(zhuǎn)換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應用公式.要注意應用這種變形方法來解決問題. 引領 講解 說明 引領 分析 說明 啟發(fā) 引導 啟發(fā) 分析 觀察 思考 主動 求解 觀察 思考 理解 口答 注意 觀察 學生 是否 理解 知識 點 學生 自我 發(fā)現(xiàn) 歸納 25

上一頁123...8910111213141516171819下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。