提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大版初中數(shù)學(xué)九年級下冊二次函數(shù)與一元二次方程說課稿

  • 北師大初中數(shù)學(xué)九年級上冊黃金分割1教案

    北師大初中數(shù)學(xué)九年級上冊黃金分割1教案

    解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準(zhǔn)確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會黃金分割的文化價值,在應(yīng)用中進(jìn)一步理解相關(guān)內(nèi)容,在實際操作、思考、交流等過程中增強(qiáng)學(xué)生的實踐意識和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣.

  • 北師大初中數(shù)學(xué)九年級上冊黃金分割2教案

    北師大初中數(shù)學(xué)九年級上冊黃金分割2教案

    2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗.這次的試驗點應(yīng)該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計

  • 北師大初中數(shù)學(xué)九年級上冊比例的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級上冊比例的性質(zhì)1教案

    若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.

  • 北師大初中數(shù)學(xué)九年級上冊矩形的判定2教案

    北師大初中數(shù)學(xué)九年級上冊矩形的判定2教案

    2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補(bǔ)的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)

  • 北師大初中數(shù)學(xué)九年級上冊菱形的判定2教案

    北師大初中數(shù)學(xué)九年級上冊菱形的判定2教案

    方法三:一個同學(xué)先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形

  • 北師大初中數(shù)學(xué)九年級上冊菱形的判定1教案

    北師大初中數(shù)學(xué)九年級上冊菱形的判定1教案

    (1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進(jìn)一步提高學(xué)生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.

  • 北師大初中數(shù)學(xué)九年級上冊相似多邊形1教案

    北師大初中數(shù)學(xué)九年級上冊相似多邊形1教案

    (2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.

  • 北師大初中數(shù)學(xué)九年級上冊相似多邊形2教案

    北師大初中數(shù)學(xué)九年級上冊相似多邊形2教案

    (2)相似多邊形的對應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質(zhì).活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學(xué)生活動:學(xué)生通過例題運用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應(yīng)重點關(guān)注:(1)學(xué)生參與活動的熱情及語言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習(xí)題4.4

  • 北師大初中數(shù)學(xué)七年級上冊一元一次方程說課稿

    北師大初中數(shù)學(xué)七年級上冊一元一次方程說課稿

    五、課堂設(shè)計理念本節(jié)課著力體現(xiàn)以下幾個方面:1、突出問題的應(yīng)用意識。在各個環(huán)節(jié)的安排上都設(shè)計成一個個問題,使學(xué)生能圍繞問題展開討思考、討論,進(jìn)行學(xué)習(xí)。2、體現(xiàn)學(xué)生的主體意識。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點等進(jìn)行歸納。3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。4、滲透建模思想。把實際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實際問題抽象出方程模型的能力。

  • 北師大版初中數(shù)學(xué)八年級下冊一元一次不等式與一次函數(shù)說課稿2篇

    北師大版初中數(shù)學(xué)八年級下冊一元一次不等式與一次函數(shù)說課稿2篇

    由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應(yīng)的觀點考慮問題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識:⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動”―――學(xué)生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。2、“探”―――引導(dǎo)學(xué)生動手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。3、“樂”―――本節(jié)課的設(shè)計力求做到與學(xué)生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學(xué)生興趣高一點,自信心強(qiáng)一點,使學(xué)生樂于學(xué)習(xí),樂于思考。4、“滲”―――在整個教學(xué)過程中,滲透用聯(lián)系的觀點看待數(shù)學(xué)問題的辨證思想。

  • 北師大版初中八年級數(shù)學(xué)上冊二次根式說課稿

    北師大版初中八年級數(shù)學(xué)上冊二次根式說課稿

    有意義,字母x的取值必須滿足什么條件?設(shè)計意圖:通過例題的講解,使學(xué)生加深對所學(xué)知識的理解,避免一些常見錯誤。而變式練習(xí)設(shè)計,延續(xù)的例題的風(fēng)格,一步一步,步步深入,本節(jié)課的教學(xué)難點就在學(xué)生的操作活動中迎刃而解了。對提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識,激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運用,提高認(rèn)識1、通過基礎(chǔ)訓(xùn)練讓學(xué)生體驗學(xué)習(xí)的成就感。2、應(yīng)用拓展:增加難處,再次讓學(xué)生聯(lián)系以前的知識,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識。(六)、總結(jié)評價,質(zhì)疑問難這節(jié)課我們學(xué)習(xí)了什么?設(shè)計意圖:學(xué)生共同總結(jié),互相取長補(bǔ)短,學(xué)生在暢所欲言中對二次根式的認(rèn)知得到進(jìn)一步的鞏固升華。五、板書設(shè)計.采用綱領(lǐng)式的板書,使學(xué)生有“話”可說,有“理”可循,在簡單板書設(shè)計中使學(xué)生體會到數(shù)學(xué)的簡潔美。

  • 北師大版初中數(shù)學(xué)九年級下冊頻率與概率說課稿

    北師大版初中數(shù)學(xué)九年級下冊頻率與概率說課稿

    一、教材分析:1、地位與作用:《頻率與概率》選自高等教育出版社出版,李廣全、李尚志主編的中等職業(yè)教育課程改革國家規(guī)劃新教材《數(shù)學(xué)》(基礎(chǔ)模塊)下冊,第十章第二節(jié)的內(nèi)容。本節(jié)課的最大特點是與人們的日常生活密切聯(lián)系。而本節(jié)課的內(nèi)容主要包括概率的定義和用頻率估計概率的方法,安排1課時完成。本節(jié)課的學(xué)習(xí),將為后面學(xué)習(xí)古典概型和用列舉法求等可能性事件的概率打下基礎(chǔ),同時也為學(xué)生體會概率和統(tǒng)計之間的聯(lián)系打下基礎(chǔ),在教材中處于非常重要的位置。2、學(xué)情分析:本節(jié)課的授課對象是高二(2)班的會計專業(yè)的學(xué)生,女生偏多。學(xué)生數(shù)學(xué)基礎(chǔ)較好。學(xué)生思維活躍,善于交流,動手操作能力強(qiáng),對上節(jié)課的必然事件、隨機(jī)事件、不可能事件知識已經(jīng)理解并掌握,表現(xiàn)欲強(qiáng)。這些特點為本堂課的有效教學(xué)提供了質(zhì)的保障。

  • 北師大版初中數(shù)學(xué)九年級下冊垂直與弦的直徑說課稿

    北師大版初中數(shù)學(xué)九年級下冊垂直與弦的直徑說課稿

    至此,估計學(xué)生基本能夠掌握定理,達(dá)到預(yù)定目標(biāo),這時,利用提問形式,師生共同進(jìn)行小結(jié)。五、幾點說明1、板書設(shè)計:為了使本節(jié)課更具理論性、邏輯性,我將板書設(shè)計分為三部分,第一部分為圓的軸對稱性,第二部分為垂徑定理,第三部分為測評反饋區(qū)(學(xué)生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒有涉及逆定理。3、設(shè)計要突出的特色:為了給學(xué)生營造一個民主、平等而又富有詩意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想,在教學(xué)過程中始終面向全體學(xué)生,依據(jù)學(xué)生的實際水平,選擇適當(dāng)?shù)慕虒W(xué)起點和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過程中,獲得良好的情感體驗。通過“實驗--觀察--猜想--證明”的思想,讓每個學(xué)生都有所得,我注意前后知識的鏈接,進(jìn)行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時讓學(xué)生利用所學(xué)知識解決實際問題,感受理論聯(lián)系實際的思想方法。

  • 北師大版初中數(shù)學(xué)九年級下冊直線與圓的位置關(guān)系說課稿

    北師大版初中數(shù)學(xué)九年級下冊直線與圓的位置關(guān)系說課稿

    設(shè)計意圖這一組習(xí)題的設(shè)計,讓每位學(xué)生都參與,通過學(xué)生的主動參與,讓每一位學(xué)生有“用武之地”,深刻體會本節(jié)課的重要內(nèi)容和思想方法,體驗學(xué)習(xí)數(shù)學(xué)的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導(dǎo)學(xué)生進(jìn)行課堂小結(jié),給出下列提綱,并就學(xué)生回答進(jìn)行點評。(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問題?(學(xué)生活動)學(xué)生發(fā)言,互相補(bǔ)充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習(xí)8.4.41、2題(2)實踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計意圖通過讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時,在知識拓展時起激學(xué)生探究的熱情,讓每一個不同層次的學(xué)生都可以獲得成功的喜悅。

  • 北師大初中數(shù)學(xué)九年級上冊投影的概念與中心投影1教案

    北師大初中數(shù)學(xué)九年級上冊投影的概念與中心投影1教案

    ∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點Q時在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對應(yīng)線段的長度.三、板書設(shè)計投影的概念與中心投影投影的概念:物體在光線的照射下,會    在地面或其他平面上留    下它的影子,這就是投影    現(xiàn)象中心投影概念:點光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關(guān)系的活動中,體會立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過在燈光下擺弄小棒、紙片,體會、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問題、分析問題的能力.

  • 北師大初中數(shù)學(xué)九年級上冊投影的概念與中心投影2教案

    北師大初中數(shù)學(xué)九年級上冊投影的概念與中心投影2教案

    五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對面有一路燈,當(dāng)小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習(xí)題5.1八、板書設(shè)計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經(jīng)歷實踐、探索的過程,掌握了中心投影的含義,進(jìn)一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達(dá)能力.

  • 北師大初中數(shù)學(xué)九年級上冊概率與游戲的綜合運用2教案

    北師大初中數(shù)學(xué)九年級上冊概率與游戲的綜合運用2教案

    三、典型例題,應(yīng)用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再從中隨機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應(yīng)注意什么?2. 你還有哪些收獲和疑惑?

  • 北師大初中數(shù)學(xué)九年級上冊平行投影與正投影2教案

    北師大初中數(shù)學(xué)九年級上冊平行投影與正投影2教案

    四、范例學(xué)習(xí)、理解領(lǐng)會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當(dāng)乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學(xué)生畫圖、 實驗、觀察、探索。五、隨堂練習(xí)課本隨堂練習(xí) 學(xué)生觀察、畫圖、合作交流。六、課堂總結(jié)本節(jié)課通過各種實踐活動,促進(jìn)大家對內(nèi)容的理解,本課內(nèi)容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.

  • 北師大初中八年級數(shù)學(xué)下冊第二章復(fù)習(xí)教案

    北師大初中八年級數(shù)學(xué)下冊第二章復(fù)習(xí)教案

    例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學(xué)回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結(jié)果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學(xué)生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學(xué)生都按八折收費.假設(shè)這兩位家長帶領(lǐng)x名學(xué)生去旅游,他們應(yīng)該選擇哪家旅行社?

  • 北師大初中數(shù)學(xué)九年級上冊正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級上冊正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!