提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):1.2《集合之間的關(guān)系》優(yōu)秀教案

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):1.2《集合之間的關(guān)系》優(yōu)秀教案

    學(xué)科數(shù)學(xué) 課 題 1.2 集合之間的關(guān)系班級(jí) 人數(shù) 授課時(shí)數(shù)2 課 型新課 周次 授課時(shí)間 教 學(xué) 目 的 知識(shí)目標(biāo):(1)掌握子集、真子集的概念; (2)掌握兩個(gè)集合相等的概念; (3)會(huì)判斷集合之間的關(guān)系. 能力目標(biāo):培養(yǎng)學(xué)生的分析問(wèn)題能力解決問(wèn)題的能力. 情感目標(biāo):通過(guò)師生互動(dòng),學(xué)生之間的討論分析,加強(qiáng)合作意識(shí)。 教學(xué)重點(diǎn)集合與集合間的關(guān)系及其相關(guān)符號(hào)表示. 教學(xué)難點(diǎn)真子集概念的理解.

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):2.3《一元二次不等式》優(yōu)秀教案

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):2.3《一元二次不等式》優(yōu)秀教案

    【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點(diǎn)】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點(diǎn)】 一元二次不等式的解法?!窘虒W(xué)設(shè)計(jì)】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類(lèi)比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強(qiáng)知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力?!菊n時(shí)安排】 2課時(shí)(90分鐘)【教學(xué)過(guò)程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識(shí),填寫(xiě)下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個(gè)根有 1 個(gè)根有 0 個(gè)根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問(wèn)題:(1)當(dāng)y=0時(shí),x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點(diǎn)的坐標(biāo)是什么?(3)當(dāng)y<0時(shí),x的取值范圍是什么?總結(jié):由此看到,通過(guò)對(duì)函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):5.5《誘導(dǎo)公式》優(yōu)秀教案

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):5.5《誘導(dǎo)公式》優(yōu)秀教案

    教學(xué)目標(biāo):知識(shí)與能力目標(biāo):1.能夠借助三角函數(shù)的定義及單位圓推導(dǎo)出三角函數(shù)的誘導(dǎo)公式 2.能夠運(yùn)用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡(jiǎn)、求值問(wèn)題轉(zhuǎn)化為銳角的三角函數(shù)的化簡(jiǎn)、求值問(wèn)題情感目標(biāo):1.通過(guò)誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度 2.通過(guò)誘導(dǎo)公式探求工程中的合作學(xué)習(xí),培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神; 3. 通過(guò)誘導(dǎo)公式的運(yùn)用,培養(yǎng)學(xué)生的劃歸能力,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。 一導(dǎo)入:二、自學(xué)(閱讀教材第110---112頁(yè),回答下列問(wèn)題) 在直角坐標(biāo)系下,角的終邊與圓心在原點(diǎn)的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關(guān)于軸的對(duì)稱(chēng)點(diǎn)的特征: 。對(duì)于角而言:角關(guān)于軸對(duì)稱(chēng)的角為_(kāi)______公式二:__________ _________ _________

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線(xiàn)的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線(xiàn)的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線(xiàn)的位置關(guān)系(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)兩條直線(xiàn)的位置關(guān)系有三種:平行、相交、重合.并且知道,兩條直線(xiàn)都與第三條直線(xiàn)相交時(shí),“同位角相等”是“這兩條直線(xiàn)平行”的充要條件. 【問(wèn)題】 兩條直線(xiàn)平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考*動(dòng)腦思考 探索新知 【新知識(shí)】 當(dāng)兩條直線(xiàn)、的斜率都存在且都不為0時(shí)(如圖8-11(1)),如果直線(xiàn)平行于直線(xiàn),那么這兩條直線(xiàn)與x軸相交的同位角相等,即直線(xiàn)的傾角相等,故兩條直線(xiàn)的斜率相等;反過(guò)來(lái),如果直線(xiàn)的斜率相等,那么這兩條直線(xiàn)的傾角相等,即兩條直線(xiàn)與x軸相交的同位角相等,故兩直線(xiàn)平行. 當(dāng)直線(xiàn)、的斜率都是0時(shí)(如圖8-11(2)),兩條直線(xiàn)都與x軸平行,所以//. 當(dāng)兩條直線(xiàn)、的斜率都不存在時(shí)(如圖8-11(3)),直線(xiàn)與直線(xiàn)都與x軸垂直,所以直線(xiàn)// 直線(xiàn). 顯然,當(dāng)直線(xiàn)、的斜率都存在但不相等或一條直線(xiàn)的斜率存在而另一條直線(xiàn)的斜率不存在時(shí),兩條直線(xiàn)相交. 由上面的討論知,當(dāng)直線(xiàn)、的斜率都存在時(shí),設(shè),,則 兩個(gè)方程的系數(shù)關(guān)系兩條直線(xiàn)的位置關(guān)系相交平行重合 當(dāng)兩條直線(xiàn)的斜率都存在時(shí),就可以利用兩條直線(xiàn)的斜率及直線(xiàn)在y軸上的截距,來(lái)判斷兩直線(xiàn)的位置關(guān)系. 判斷兩條直線(xiàn)平行的一般步驟是: (1) 判斷兩條直線(xiàn)的斜率是否存在,若都不存在,則平行;若只有一個(gè)不存在,則相交. (2) 若兩條直線(xiàn)的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線(xiàn)的縱截距,相等則重合,不相等則平行. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 思考 理解 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個(gè)計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類(lèi)方式.第一類(lèi)方式有k1種方法,第二類(lèi)方式有k2種方法,……,第n類(lèi)方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個(gè)步驟.完成第1個(gè)步驟有k1種方法,完成第2個(gè)步驟有k2種方法,……,完成第n個(gè)步驟有kn種方法,并且只有這n個(gè)步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個(gè)問(wèn)題: 在北京、重慶、上海3個(gè)民航站之間的直達(dá)航線(xiàn),需要準(zhǔn)備多少種不同的機(jī)票? 這個(gè)問(wèn)題就是從北京、重慶、上海3個(gè)民航站中,每次取出2個(gè)站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個(gè)民航站中任意選取1個(gè),有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個(gè)民航站中任意選取1個(gè),有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本虾!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動(dòng)腦思考 探索新知 我們將被取的對(duì)象(如上面問(wèn)題中的民航站)叫做元素,上面的問(wèn)題就是:從3個(gè)不同元素中,任取2個(gè),按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個(gè)不同元素中,任取m (m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列,時(shí)叫做選排列,時(shí)叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題方法 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類(lèi)問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測(cè)量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長(zhǎng)度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長(zhǎng)度約為409m. 圖1-15 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.3《直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面所成的角》

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.3《直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面所成的角》

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.3 直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面所成的角 *創(chuàng)設(shè)情境 興趣導(dǎo)入 在圖9?30所示的長(zhǎng)方體中,直線(xiàn)和直線(xiàn)是異面直線(xiàn),度量和,發(fā)現(xiàn)它們是相等的. 如果在直線(xiàn)上任選一點(diǎn)P,過(guò)點(diǎn)P分別作與直線(xiàn)和直線(xiàn)平行的直線(xiàn),那么它們所成的角是否與相等? 圖9?30 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 5*動(dòng)腦思考 探索新知 我們知道,兩條相交直線(xiàn)的夾角是這兩條直線(xiàn)相交所成的最小的正角. 經(jīng)過(guò)空間任意一點(diǎn)分別作與兩條異面直線(xiàn)平行的直線(xiàn),這兩條相交直線(xiàn)的夾角叫做兩條異面直線(xiàn)所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線(xiàn)與所成的角.為了簡(jiǎn)便,經(jīng)常取一條直線(xiàn)與過(guò)另一條直線(xiàn)的平面的交點(diǎn)作為點(diǎn)(如圖9?31(2)) (1) 圖9-31(2) 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 12*鞏固知識(shí) 典型例題 例1 如圖9?32所示的長(zhǎng)方體中,,求下列異面直線(xiàn)所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因?yàn)?∥,所以為異面直線(xiàn)與所成的角.即所求角為. (2)因?yàn)椤危詾楫惷嬷本€(xiàn)與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 講解 說(shuō)明 觀察 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 17

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.2《直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面平行的判定》

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.2《直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面平行的判定》

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.2 直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面平行的判定與性質(zhì) *創(chuàng)設(shè)情境 興趣導(dǎo)入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線(xiàn),既不相交又不平行,它們不同在任何一個(gè)平面內(nèi). 圖9?13 觀察教室中的物體,你能否抽象出這種位置關(guān)系的兩條直線(xiàn)? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 2*動(dòng)腦思考 探索新知 在同一個(gè)平面內(nèi)的直線(xiàn),叫做共面直線(xiàn),平行或相交的兩條直線(xiàn)都是共面直線(xiàn).不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)叫做異面直線(xiàn).圖9-13所示的正方體中,直線(xiàn)與直線(xiàn)就是兩條異面直線(xiàn). 這樣,空間兩條直線(xiàn)就有三種位置關(guān)系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時(shí)兩支鉛筆所在的直線(xiàn)異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請(qǐng)畫(huà)出實(shí)物圖) 受實(shí)驗(yàn)的啟發(fā),我們可以利用平面做襯托,畫(huà)出表示兩條異面直線(xiàn)的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書(shū)本,演示圖9?15(2)的異面直線(xiàn)位置關(guān)系. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 5

  • 人教A版高中數(shù)學(xué)必修二簡(jiǎn)單隨機(jī)抽樣教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二簡(jiǎn)單隨機(jī)抽樣教學(xué)設(shè)計(jì)

    知識(shí)探究(一):普查與抽查像人口普查這樣,對(duì)每一個(gè)調(diào)查調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱(chēng)為全面調(diào)查(又稱(chēng)普查)。 在一個(gè)調(diào)查中,我們把調(diào)查對(duì)象的全體稱(chēng)為總體,組成總體的每一個(gè)調(diào)查對(duì)象稱(chēng)為個(gè)體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對(duì)象的某些指標(biāo)的全體作為總體,每一個(gè)調(diào)查對(duì)象的相應(yīng)指標(biāo)作為個(gè)體。問(wèn)題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時(shí)掌握全國(guó)人口變動(dòng)狀況,我國(guó)每年還會(huì)進(jìn)行一次人口變動(dòng)情況的調(diào)查,根據(jù)抽取的居民情況來(lái)推斷總體的人口變動(dòng)情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情況作出估計(jì)和判斷的方法,稱(chēng)為抽樣調(diào)查(或稱(chēng)抽查)。我們把從總體中抽取的那部分個(gè)體稱(chēng)為樣本,樣本中包含的個(gè)體數(shù)稱(chēng)為樣本量。

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類(lèi)似,可以用“五點(diǎn)法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線(xiàn). 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例3 作出函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個(gè)關(guān)鍵點(diǎn)的橫坐標(biāo),分別令,,,,,求出對(duì)應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對(duì)應(yīng)五個(gè)關(guān)鍵點(diǎn)(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線(xiàn)聯(lián)結(jié)各點(diǎn),得到函數(shù)在一個(gè)周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 15

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    一、定義:  ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開(kāi)式;上述二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開(kāi)式的通項(xiàng),用表示;叫做二項(xiàng)展開(kāi)式的通項(xiàng)公式.二、二項(xiàng)展開(kāi)式的特點(diǎn)與功能1. 二項(xiàng)展開(kāi)式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開(kāi)式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開(kāi)式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開(kāi)式的功能注意到二項(xiàng)展開(kāi)式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開(kāi)式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問(wèn)題的原始依據(jù).又注意到在的二項(xiàng)展開(kāi)式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見(jiàn)展開(kāi)式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問(wèn)題,二項(xiàng)式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【教學(xué)目標(biāo)】知識(shí)目標(biāo):⑴ 理解任意角的三角函數(shù)的定義及定義域;⑵ 理解三角函數(shù)在各象限的正負(fù)號(hào);⑶掌握界限角的三角函數(shù)值.能力目標(biāo):⑴會(huì)利用定義求任意角的三角函數(shù)值;⑵會(huì)判斷任意角三角函數(shù)的正負(fù)號(hào);⑶培養(yǎng)學(xué)生的觀察能力.【教學(xué)重點(diǎn)】⑴ 任意角的三角函數(shù)的概念;⑵ 三角函數(shù)在各象限的符號(hào);⑶特殊角的三角函數(shù)值.【教學(xué)難點(diǎn)】任意角的三角函數(shù)值符號(hào)的確定.【教學(xué)設(shè)計(jì)】(1)在知識(shí)回顧中推廣得到新知識(shí);(2)數(shù)形結(jié)合探求三角函數(shù)的定義域;(3)利用定義認(rèn)識(shí)各象限角三角函數(shù)的正負(fù)號(hào);(4)數(shù)形結(jié)合認(rèn)識(shí)界限角的三角函數(shù)值;(5)問(wèn)題引領(lǐng),師生互動(dòng).在問(wèn)題的思考和交流中,提升能力.

  • 簡(jiǎn)單隨機(jī)抽樣教案教學(xué)設(shè)計(jì)

    簡(jiǎn)單隨機(jī)抽樣教案教學(xué)設(shè)計(jì)

    1、交流與發(fā)現(xiàn)為了了解本校學(xué)生暑假期間參加體育活動(dòng)的情況,學(xué)校準(zhǔn)備抽取一部分學(xué)生進(jìn)行調(diào)查,你認(rèn)為按下面的調(diào)查方法取得的結(jié)果能反映全校學(xué)生的一般情況嗎?如果不能反映,應(yīng)當(dāng)如何改進(jìn)調(diào)查方法?方法1:調(diào)查學(xué)校田徑隊(duì)的30名同學(xué);方法2:調(diào)查每個(gè)班的男同學(xué);方法3:從每班抽取1名同學(xué)進(jìn)行調(diào)查;方法4:選取每個(gè)班級(jí)中的一半學(xué)生進(jìn)行調(diào)查.通過(guò)前面的活動(dòng),學(xué)生親身經(jīng)歷了一次數(shù)據(jù)的調(diào)查過(guò)程,并通過(guò)對(duì)所得數(shù)據(jù)的計(jì)算和分析,了解了自己在家干家務(wù)活的時(shí)間所處的位置和水平,在調(diào)查過(guò)程中體會(huì)到調(diào)查方便有效的重要性.接下來(lái),就能很好地解決交流與發(fā)現(xiàn)中的問(wèn)題.師生共同討論完成交流與發(fā)現(xiàn).

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.4《二項(xiàng)分布》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.4《二項(xiàng)分布》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.4 二項(xiàng)分布. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們來(lái)看一個(gè)問(wèn)題:從100件產(chǎn)品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次數(shù)用表示,求離散型隨機(jī)變量的概率分布. 由于是有放回的抽取,所以這種抽取是是獨(dú)立的重復(fù)試驗(yàn).隨機(jī)變量的所有取值為:0,1,2,3.顯然,對(duì)于一次抽取,抽到不合格品的概率為0.03,抽到合格品的概率為1-0.03.于是的概率(僅求到組合數(shù)形式)分別為: , , , . 所以,隨機(jī)變量的概率分布為 0123P 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動(dòng)腦思考 探索新知 一般地,如果在一次試驗(yàn)中某事件A發(fā)生的概率是P,隨機(jī)變量為n次獨(dú)立試驗(yàn)中事件A發(fā)生的次數(shù),那么隨機(jī)變量的概率分布為: 01…k…nP…… 其中. 我們將這種形式的隨機(jī)變量的概率分布叫做二項(xiàng)分布.稱(chēng)隨機(jī)變量服從參數(shù)為n和P的二項(xiàng)分布,記為~B(n,P). 二項(xiàng)分布中的各個(gè)概率值,依次是二項(xiàng)式的展開(kāi)式中的各項(xiàng).第k+1項(xiàng)為. 二項(xiàng)分布是以伯努利概型為背景的重要分布,有著廣泛的應(yīng)用. 在實(shí)際問(wèn)題中,如果n次試驗(yàn)相互獨(dú)立,且各次實(shí)驗(yàn)是重復(fù)試驗(yàn),事件A在每次實(shí)驗(yàn)中發(fā)生的概率都是p(0<p<1),則事件A發(fā)生的次數(shù)是一個(gè)離散型隨機(jī)變量,服從參數(shù)為n和P的二項(xiàng)分布. 總結(jié) 歸納 分析 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題方法 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類(lèi)問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測(cè)量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長(zhǎng)度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長(zhǎng)度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長(zhǎng)線(xiàn)上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問(wèn)題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動(dòng)腦思考 探索新知 在單位圓(如上圖)中,設(shè)向量、與x軸正半軸的夾角分別為和,則點(diǎn)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導(dǎo)公式可以證明,(1)、(2)兩式對(duì)任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題的方法 25

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 10*動(dòng)腦思考 探索新知 在任意三角形中,是否也存在類(lèi)似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時(shí),不妨設(shè)角為鈍角,如圖所示,以為原點(diǎn),以射線(xiàn)的方向?yàn)檩S正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時(shí),同樣可以得到這個(gè)結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對(duì)的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問(wèn)題: (1)已知三角形的兩個(gè)角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對(duì)角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20

  • 人教A版高中數(shù)學(xué)必修二有限樣本空間與隨機(jī)事件事件的關(guān)系和運(yùn)算教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二有限樣本空間與隨機(jī)事件事件的關(guān)系和運(yùn)算教學(xué)設(shè)計(jì)

    新知講授(一)——隨機(jī)試驗(yàn) 我們把對(duì)隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對(duì)它的觀察稱(chēng)為隨機(jī)試驗(yàn),簡(jiǎn)稱(chēng)試驗(yàn),常用字母E表示。我們通常研究以下特點(diǎn)的隨機(jī)試驗(yàn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);(3)每次試驗(yàn)總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不確定出現(xiàn)哪個(gè)結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎(jiǎng)時(shí),將10個(gè)質(zhì)地和大小完全相同、分別標(biāo)號(hào)0,1,2,...,9的球放入搖獎(jiǎng)器中,經(jīng)過(guò)充分?jǐn)嚢韬髶u出一個(gè)球,觀察這個(gè)球的號(hào)碼。這個(gè)隨機(jī)試驗(yàn)共有多少個(gè)可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號(hào)碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號(hào)碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱(chēng)為樣本點(diǎn),全體樣本點(diǎn)的集合稱(chēng)為試驗(yàn)E的樣本空間。

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問(wèn)題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 5*動(dòng)腦思考 探索新知 由同角三角函數(shù)關(guān)系,知 , 當(dāng)時(shí),得到 (1.5) 利用誘導(dǎo)公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應(yīng)使式子的左右兩端都有意義. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題的方法 15*鞏固知識(shí) 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進(jìn)行轉(zhuǎn)換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫(xiě)成,從而使得三角式可以應(yīng)用公式.要注意應(yīng)用這種變形方法來(lái)解決問(wèn)題. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 分析 說(shuō)明 啟發(fā) 引導(dǎo) 啟發(fā) 分析 觀察 思考 主動(dòng) 求解 觀察 思考 理解 口答 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 學(xué)生 自我 發(fā)現(xiàn) 歸納 25

上一頁(yè)12345678910111213下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!