至此,估計學生基本能夠掌握定理,達到預(yù)定目標,這時,利用提問形式,師生共同進行小結(jié)。五、幾點說明1、板書設(shè)計:為了使本節(jié)課更具理論性、邏輯性,我將板書設(shè)計分為三部分,第一部分為圓的軸對稱性,第二部分為垂徑定理,第三部分為測評反饋區(qū)(學生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒有涉及逆定理。3、設(shè)計要突出的特色:為了給學生營造一個民主、平等而又富有詩意的課堂,我以新數(shù)學課程標準下的基本理念和總體目標為指導思想,在教學過程中始終面向全體學生,依據(jù)學生的實際水平,選擇適當?shù)慕虒W起點和教學方法,充分讓學生參與教學,在合作交流的過程中,獲得良好的情感體驗。通過“實驗--觀察--猜想--證明”的思想,讓每個學生都有所得,我注意前后知識的鏈接,進行各學科間的整合,為學生提供了廣闊的思考空間,同時讓學生利用所學知識解決實際問題,感受理論聯(lián)系實際的思想方法。
說教學難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學生的年齡和認知特點,教材中“圖形的放大與縮小”從對應(yīng)邊的比相等來進行安排,而對應(yīng)角的不變也是形狀不變必備的條件,是學生體會圖形的相似所必需的。學生在學習的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮???)所以我把“學生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應(yīng)邊的比相等,對應(yīng)角不變)”做為本節(jié)課的難點。說教法、學法:通過直觀演示,情景激趣,結(jié)合生活讓學生形成感性認識;引導學生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學習、驗證等過程形成理性認識。教學過程:(略)
(四)提高應(yīng)用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設(shè)計意圖:訓練學生靈活運用知識的能力(五)小結(jié)反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似. 2、在找對應(yīng)角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構(gòu)造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調(diào)兩個基本圖形,培養(yǎng)學生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應(yīng)角的方法:①已知角相等;②已知角度計算得出相等的對應(yīng)角;③公共角;④對頂角;⑤同角的余(補)角相等.
接著,引導學生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學表達式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應(yīng)高。求證:AD/A/D/=K首先讓學生回憶,證明線段成比例學過哪些方法,接著引導學生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學生能找到含對應(yīng)高和對應(yīng)邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學生口述教師板書規(guī)范的證明過程。接著問學生還有哪些證明方法?同理可證得其他兩邊上的對應(yīng)高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學表達式和證明方法與命題1類似,所以為了提高教學效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導學生課堂練習證明這兩個命題。
準備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復聽到消息的可能性是很大的,當然重復感染的可能性也是很大的。
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號化,設(shè)定一個量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個位三,個位平方與壽符,哪位學子算得快,多少年華屬周瑜?本題強調(diào)對古文化詩詞的閱讀理解,貫通數(shù)學的實際應(yīng)用。有兩種解題思路:枚舉法和方程法。
注意強調(diào)概念理解不到位的方面:① tanA是一個完整的符號,它表示∠A的正切,記號里習慣省去角的符號“∠”,若用三個字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學生求∠A,∠B的正切及時強化學生對概念的3、正切函數(shù)的應(yīng)用理解通過實際問題的解答進一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學生進行正切的變式訓練,讓學生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習的安插注意梯度,讓不同的學生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點及注意點五、達標測試具體思路:把幾個問題分為四個等級,方便對學生的了解;通過評價讓學生對自己的學習也做到心中有數(shù)。
教學媒體設(shè)計充分利用多媒體教學,將powerpoint、《幾何畫板》兩種軟件結(jié)合起來制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數(shù)圖像的動畫性,更加形象的反映出作圖的過程,增加數(shù)學的美感,激發(fā)學生作圖的興趣。教學評價設(shè)計本節(jié)課,我合理、充分利用了多媒體教學的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應(yīng)用,畫出了標準、動畫形式的二次函數(shù)的圖像,讓抽象思維不強的學生,更加形象的結(jié)合圖形,分析說出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學思想。為了突出重點,攻破難點,我要求學生“先觀察后思考”、“先做后說”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學過程中以學生為主體,老師起主導作用的教學原則。本節(jié)課,讓學生有觀察,有思考,有討論,有練習,充分調(diào)動了學生的學習興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準備。
1、圓的半徑是 ,假設(shè)半徑增加 時,圓的面積增加 。(1)寫出 與 之間的關(guān)系表達式;(2)當圓的半徑分別增加 , , 時,圓的面積增加多少。【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。2、籬笆墻長 ,靠墻圍成一個矩形花壇,寫出花壇面積 與長 之間的函數(shù)關(guān)系式,并指出自變量的取值范圍?!驹O(shè)計意圖】此題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。(六) 小結(jié)思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設(shè)計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習第1題,習題2.1第1題;
設(shè)計說明:設(shè)計這組測驗為了反饋學生學習情況,第1題較簡單,也是為了讓提高學生學習士氣,體會到成功的快樂;第2題稍微有點挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學生的不同需求.教師可們采用搶答方式調(diào)動學生積極性,學生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評價.環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過4個(或4個以上的)點是不是一定能作圓?2.作業(yè):A層 課本118頁習題A組1,2,3; B層 習題B組.設(shè)計說明:設(shè)計第1題的原因保證了知識的完整性,學生在探究完三個點作圓以后,肯定有一個思維延續(xù),不在同一直線上三個點確定一個圓,四個點又會怎樣?四個點又分共線和不共線兩種情況,不共線的四點作圓問題又能用三點確定一個圓去解釋,本題既應(yīng)用了新學知識,又給學生提供了更廣泛地思考空間.第2題,主要是讓學生進一步鞏固新學知識,規(guī)范解題步驟. 在作業(yè)設(shè)計時,既面向全體學生,又尊重學生的個體差異,以掌握知識形成能力為主要目的.
(設(shè)計意圖:因為圓中有關(guān)的點、線、角及其他圖形位置關(guān)系的復雜,學生往往因?qū)σ阎獥l件的分析不夠全面,忽視某個條件,某種特殊情況,導致漏解。采用小組討論交流的方式進行要及時進行小組評價。)(3) 議一議( 如圖,OA、OB、OC都是圓O的半徑∠AOB=2∠BOC, 求證:∠ACB=2∠BAC。)(設(shè)計意圖:通過練習,使學生能靈活運用圓周角定理進行幾何題的證明,規(guī)范步驟,提高利用定理解決問題的能力。)(三)說小結(jié)首先,通過學生小組交流,談一談你有什么收獲。(提示學生從三方面入手:1、學到了知識;2、掌握了哪些數(shù)學方法;3、體會到了哪些數(shù)學思想。)然后,教師引導小組間評價。使學生對本節(jié)內(nèi)容有一個更系統(tǒng)、深刻的認識,實現(xiàn)從感性認識到理性認識的飛躍。(四)、板書設(shè)計為了集中濃縮和概括本課的教學內(nèi)容,使教學重點醒目、突出、合理有序,以便學生對本課知識點有了完整清晰的印象。我只選擇了本節(jié)課的兩個知識點作為板書。
6、問題的檢驗學生提出的問題和老師拓展的問題在解答過程中,學生能否真正領(lǐng)會,或領(lǐng)會的程度如何?這就需要檢驗才能了解。檢驗的方式很多,可以通過交流、調(diào)查、反思、隨堂檢測等方式進行。我主要采用隨堂檢測的方式,把事先準備好的自測題發(fā)給學生,或利用多媒體投影來進行當堂檢測。檢測題目不宜過多,可隨學生的課堂表現(xiàn)而有所增減,同時,把拓展性的問題作為思考題留給學生課外探索。如,這節(jié)課我是選擇了《同步作業(yè)》中的幾個具有代表性的問題來完成檢驗的。安排這一環(huán)節(jié)的意圖:通過把教學內(nèi)容以問題的形式列出來,用于檢驗學生對知識點的掌握和教師教學效果的了解,幫助教師及時掌控課堂教學情況,調(diào)整教學思路和教學進度。7、我的收獲和疑惑課程結(jié)束時,讓學生談?wù)勛约旱氖斋@以及還有哪些問題沒能搞明白。安排這一環(huán)節(jié)的意圖:這一環(huán)節(jié)可以促使學生對本節(jié)課的內(nèi)容進行主動的、深層次的的回顧與反思,從而加深學生對所學知識的整理、記憶與理解,同時也便于老師對課堂教學效果的及時掌握和調(diào)整以后的教學思路。
設(shè)計意圖這一組習題的設(shè)計,讓每位學生都參與,通過學生的主動參與,讓每一位學生有“用武之地”,深刻體會本節(jié)課的重要內(nèi)容和思想方法,體驗學習數(shù)學的樂趣,增強學習數(shù)學的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導學生進行課堂小結(jié),給出下列提綱,并就學生回答進行點評。(1)通過本節(jié)課的學習,你學會了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問題?(學生活動)學生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習8.4.41、2題(2)實踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計意圖通過讓學生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學生完成基本學習任務(wù)的同時,在知識拓展時起激學生探究的熱情,讓每一個不同層次的學生都可以獲得成功的喜悅。
1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴進行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計意圖】運用小組合作交流的方式,既培養(yǎng)了學生的合作意識和能力,又達到了互幫互助以弱帶強的目的,使學習比較吃力的同學也能參與到學習中來,體現(xiàn)了學生是學習的主體。
通過與學生講解切線長定義,讓學生在參與、合作中有一個猜想,再進一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學的方法加以證明。問題的解決,使學生既能解決新的問題,同時應(yīng)用到全等、切線的性質(zhì)等知識,同時三條輔助線中,兩條運用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過前面的學習學生們已經(jīng)對切線長定理有了較深刻的了解。為了加深學生對定理的認識并培養(yǎng)學生的應(yīng)用意識學習例1、例2。例1讓學生自己獨立完成,加深對切線長定理的理解,老師進行點評,對于例2,由師生共同分析完成,交進行示范板書。(4) 鞏固與提高此訓練題分為二個層次,目的在于鞏固新學的定理,并將所學的定理應(yīng)用到舊的知識體系中,使學生的知識體系得到補充和完善。(5) 歸納與小結(jié)通過小結(jié),使知識成為系統(tǒng)幫助學生全面理解,掌握所學的知識。
教學過程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書設(shè)計 (一)、新課引入教師提問:一個直角三角形中,一個銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設(shè)計意圖】回顧上節(jié)課所學的內(nèi)容,便于后面教學的開展。 (二)、探究新知活動一、探索特殊角的三角函數(shù),并填寫課本表格[問題] 1、觀察一副三角尺,其中有幾個銳角?它們分別等于多少度? [問題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問題] 3、cos30°等于多少?tan30°呢? [問題] 4、我們求出了30°角的三個三角函數(shù)值,還有兩個特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
本節(jié)課的設(shè)計是以教學大綱和教材為依據(jù),遵循因材施教的原則,堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。本節(jié)課采用教具輔助教學,旨在呈現(xiàn)更直觀的形象,提高學生的積極性和主動性,并提高課堂效率。2、學法研究“贈人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的知識,首先教師應(yīng)創(chuàng)造一種環(huán)境,引導學生從已知的、熟悉的知識入手,讓學生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領(lǐng)域,從不同角度去分析、解決新問題,通過基礎(chǔ)練習、提高練習和拓展練習發(fā)掘不同層次學生的不同能力,從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
第一道例題提示學生把地基看成一個幾何圖形,即正六邊形,逐步引導學生完成例題的解答。例題1:有一個亭子它的地基是半徑為4米的正六邊形,求地基的周長和面積(精確到0.1平方米)。第二道例題,我讓學生獨立完成,我在下面巡視,個別輔導,同時我將關(guān)注不同層次學生對本節(jié)知識的理解、掌握程度,及時調(diào)整教學。最后,引導學生總結(jié)這一類問題的求解方法。這兩道例題旨在將實際問題轉(zhuǎn)化成數(shù)學問題,將多邊形化歸成三角形來解決,體現(xiàn)了化歸思想的應(yīng)用。(七)、課堂小結(jié)(1)學完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對學生素質(zhì)的差異設(shè)計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎(chǔ)知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。
當然,在討論的過程中,對個別學生要及時點撥利用相似三角形對應(yīng)邊的關(guān)系來求AD,至于S與x的關(guān)系式自然是水到渠成了。接著讓同學們以小組為單位,派出代表展示自己的討論成果。然后我進一步拋出重點問題3)這里S與x是一種什么函數(shù)關(guān)系?當x 取何值時,S的值最大?最大值是多少?這個例題和剛才的做一做非常相似。那么要求矩形的面積 就必須知道矩形的長和寬,通過學生的思考、討論、大家都明白了S與x的關(guān)系一定是二次函數(shù),要求面積的最大值,也就是求二次函數(shù)的最大值,這樣就將實際問題轉(zhuǎn)化為數(shù)學問題了.簡單的小組交流過后,同學們爭先恐后表達自己的觀點:有的小組利用的是配方法,有的小組直接利用二次函數(shù)的頂點坐標求出了最大面積。 ,我及時的鼓勵學生:大家真的很棒,老師為你們驕傲,請再接再厲。
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應(yīng)具備的優(yōu)秀品質(zhì).從教學樓到圖書館,總有少數(shù)同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.