提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中數(shù)學九年級上冊線段的比和成比例線段1教案

  • 北師大初中數(shù)學九年級上冊線段的比和成比例線段1教案

    北師大初中數(shù)學九年級上冊線段的比和成比例線段1教案

    故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據(jù)線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數(shù)成比例,則應滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.

  • 北師大初中數(shù)學九年級上冊線段的比和成比例線段2教案

    北師大初中數(shù)學九年級上冊線段的比和成比例線段2教案

    (三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

  • 北師大初中數(shù)學九年級上冊平行線分線段成比例1教案

    北師大初中數(shù)學九年級上冊平行線分線段成比例1教案

    證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截,   所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數(shù)學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數(shù)學活動的經(jīng)驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.

  • 北師大初中七年級數(shù)學上冊比較線段的長短教案1

    北師大初中七年級數(shù)學上冊比較線段的長短教案1

    1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應具備的優(yōu)秀品質.從教學樓到圖書館,總有少數(shù)同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結果,設AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.

  • 北師大初中七年級數(shù)學上冊比較線段的長短教案2

    北師大初中七年級數(shù)學上冊比較線段的長短教案2

    教學反思: 1.本課時設計的主導思想是:將數(shù)形結合的思想滲透給學生,使學生對數(shù)與形有一個初步的認識.為將來的學習打下基礎,這節(jié)課是一堂起始課,它為學生的思維開拓了一個新的天地.在傳統(tǒng)的教學安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學生比較線段的方法,沒有從數(shù)形結合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內容.在教知識的同時,交給學生一種很重要的數(shù)學思想.這一點不容忽視,在日常的教學中要時時注意.2.學生在小學時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學生對圓規(guī)的用法有一個新的認識.3.在課堂練習中安排了度量一些三角形的邊的長度,目的是想通過度量使學生對“兩點之間線段最短”這一結論有一個感性的認識,并為下面的教學做一個鋪墊.

  • 北師大初中數(shù)學九年級上冊比例的性質1教案

    北師大初中數(shù)學九年級上冊比例的性質1教案

    若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質基本性質:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質:如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.

  • 北師大版初中數(shù)學九年級上冊平行線分線段成比例說課稿

    北師大版初中數(shù)學九年級上冊平行線分線段成比例說課稿

    三、達標測試這一環(huán)節(jié),我共設計了5道題,題型有選擇、填空、解答。這些題都來自于課后習題,是課后習題的重組和整合,能夠很好地考查學生對本節(jié)課的掌握情況。這一環(huán)節(jié)設計以多變的題型呈現(xiàn),總體還是以基礎題為主,以課后習題為主要內容設計,可把課后習題改編成填空、選擇、計算、解答、證明等。這些題的設計要有典性、代表性,要緊跟時代步伐。80%-90%的學生能做全對,題量不能超過6道題。學生答題時間不能超過8分鐘。四、拓展延伸這一環(huán)節(jié)以綜合運用推論的一道計算題呈現(xiàn)的。旨在讓學生在課后鞏固對推論的理解,另一方面也為后面學習相似三角形做鋪墊。以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到最佳狀態(tài)。

  • 北師大初中數(shù)學九年級上冊比例的性質2教案

    北師大初中數(shù)學九年級上冊比例的性質2教案

    請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質:猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導學生從上述實例中找出證明方法)等比性質:如果 ( ),那么 = .思考:等比性質中,為什么要 這個條件?三、 鞏固練習:1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結:1.比例的基本性質:a:b=c:d ;2. 合比性質:如果 ,那么 ;3. 等比性質:如果 ( ),五、 布置作業(yè):課本習題4.2

  • 北師大初中七年級數(shù)學上冊線段、射線、直線教案1

    北師大初中七年級數(shù)學上冊線段、射線、直線教案1

    解析:可以根據(jù)線段的定義寫出所有的線段即可得解;也可以先找出端點的個數(shù),然后利用公式n(n-1)2進行計算.方法一:圖中線段有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE;共4+3+2+1=10條;方法二:共有A、B、C、D、E五個端點,則線段的條數(shù)為5×(5-1)2=10條.故選C.方法總結:找線段時要按照一定的順序做到不重不漏,若利用公式計算時則更加簡便準確.【類型四】 線段、射線和直線的應用由鄭州到北京的某一次往返列車,運行途中??康能囌疽来问牵亨嵵荨_封——商丘——菏澤——聊城——任丘——北京,那么要為這次列車制作的火車票有()A.6種 B.12種C.21種 D.42種解析:從鄭州出發(fā)要經(jīng)過6個車站,所以要制作6種車票;從開封出發(fā)要經(jīng)過5個車站,所以要制作5種車票;從商丘出發(fā)要經(jīng)過4個車站,所以要制作4種車票;從菏澤出發(fā)要經(jīng)過3個車站,所以要制作3種車票;從聊城出發(fā)要經(jīng)過2個車站,所以要制作2種車票;從任丘出發(fā)要經(jīng)過1個車站,所以要制作1種車票.再考慮是往返列車,起點與終點不同,則車票不同,乘以2即可.即共需制作的車票數(shù)為:2×(6+5+4+3+2+1)=2×21=42種.故選D.

  • 北師大初中八年級數(shù)學下冊線段的垂直平分線教案

    北師大初中八年級數(shù)學下冊線段的垂直平分線教案

    ∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結:當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質進行線段相等關系的轉化.三、板書設計1.線段的垂直平分線的性質定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對線段垂直平分線性質定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.

  • 北師大初中七年級數(shù)學下冊線段垂直平分線的性質教案

    北師大初中七年級數(shù)學下冊線段垂直平分線的性質教案

    解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質即可解答;(2)根據(jù)線段垂直平分線的性質判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結:此題主要考查線段的垂直平分線的性質等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)1教案

    解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設可知自變量x的取值范圍為0<x<85.方法總結:反比例函數(shù)的自變量取值范圍是全體非零實數(shù),但在解決實際問題的過程中,自變量的取值范圍要根據(jù)實際情況來確定.解題過程中應該注意對題意的正確理解.三、板書設計反比例函數(shù)概念:一般地,如果兩個變量x,y之間 的對應關系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達式:待定系數(shù)法建立反比例函數(shù)的模型結合實例引導學生了解所討論的函數(shù)的表達形式,形成反比例函數(shù)概念的具體形象,從感性認識到理性認識的轉化過程,發(fā)展學生的思維.利用多媒體創(chuàng)設大量生活情境,讓學生體驗數(shù)學來源于生活實際,并為生活實際服務,讓學生感受數(shù)學有用,從而培養(yǎng)學生學習數(shù)學的興趣.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)2教案

    2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達式;(2)根據(jù)表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結、提高。(結合板書小結)今天通過生活中的例子,探索學習了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應 的任意一對對應值的積來求得,只要k確定了,這個函數(shù)就確定了。

  • 北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比1教案

    北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.

  • 北師大版初中數(shù)學八年級下冊線段的垂直平分線說課稿2篇

    北師大版初中數(shù)學八年級下冊線段的垂直平分線說課稿2篇

    活動四:自主學習,尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫弧?”同桌演示尺規(guī)作圖。最后折紙驗證,使整個學習過程更加嚴謹。我將用下面這個課件給學生展示作圖過程。再次回顧情境,讓學生完成情境中的問題。(三)講練結合,鞏固新知第一個題目是直接運用性質解決問題,比較簡單,面向全體學生。我還設計了第二個題目,想訓練學生審題的能力。(四)課堂小結在學生們共同歸納總結本節(jié)課的過程中,讓學生獲得數(shù)學思考上的提高和感受成功的喜悅并進一步系統(tǒng)地完善本節(jié)課的知識。(五)當堂檢測為了檢測學生學習情況,我設計了當堂檢測。第一個題目,讓學生學會轉化的思想來解決問題;第二個題目練習尺規(guī)作圖。

  • 北師大初中數(shù)學九年級上冊矩形的性質1教案

    北師大初中數(shù)學九年級上冊矩形的性質1教案

    解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結:矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設計矩形矩形的定義:有一個角是直角的平行四邊形    叫做矩形矩形的性質四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.

  • 北師大初中數(shù)學九年級上冊菱形的判定1教案

    北師大初中數(shù)學九年級上冊菱形的判定1教案

    (1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數(shù)學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  • 北師大初中數(shù)學九年級上冊矩形的判定1教案

    北師大初中數(shù)學九年級上冊矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于   第一、三象限內當k<0時,兩支曲線分別位于   第二、四象限內畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質提供了思維活動的空間.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結:利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設計反比例函數(shù)的性質性質當k>0時,在每一象限內,y的值隨x的值的增大而減小當k<0時,在每一象限內,y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關性質,進行語言表述,訓練學生的概括、總結能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數(shù)學學習活動中,增強他們對數(shù)學學習的好奇心與求知欲.

12345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!