提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word模板 > 教育教學(xué) > 課件教案> 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(1)
  • 收藏模板
    下載模板
  • 模板信息
  • 更新時間:2023-10-21
  • 字?jǐn)?shù):約4249字
  • 頁數(shù):約7頁
  • 格式:.docx
  • 推薦版本:Office2016及以上版本
  • 售價:5 金幣 / 會員免費

您可能喜歡的文檔

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0

  • 人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計

    (2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機地抽出6道題,若考生至少答對其中的4道題即可通過;若至少答對其中5道題就獲得優(yōu)秀.已知某考生能答對其中10道題,并且知道他在這次考試中已經(jīng)通過,求他獲得優(yōu)秀成績的概率.解:設(shè)事件A為“該考生6道題全答對”,事件B為“該考生答對了其中5道題而另一道答錯”,事件C為“該考生答對了其中4道題而另2道題答錯”,事件D為“該考生在這次考試中通過”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

  • 人教A版高中數(shù)學(xué)必修一對數(shù)的運算教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一對數(shù)的運算教學(xué)設(shè)計(1)

    本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學(xué)生認(rèn)識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導(dǎo)對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學(xué)生掌握對數(shù)式與指數(shù)式的互化;通過實例推導(dǎo)對數(shù)的運算性質(zhì),讓學(xué)生準(zhǔn)確地運用對數(shù)運算性質(zhì)進行運算,學(xué)會運用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。

  • 人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;

  • 人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(1)

    一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學(xué)們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標(biāo)是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)

  • 查看更多相關(guān)Word文檔

充分條件與必要條件教學(xué)設(shè)計(1)

本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。

從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.

課件教案

“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.

課程目標(biāo)

學(xué)科素養(yǎng)

A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;

B.會判斷命題的充分條件、必要條件、充要條件.

C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.

D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).

1.數(shù)學(xué)抽象:充分條件、必要條件、充要條件的含義;

2.邏輯推理:判斷命題的充分條件、必要條件、充要條件;

3..直觀想象:對條件的判定應(yīng)該歸結(jié)為判斷命題的真假。

1.教學(xué)重點:理解充分條件、必要條件、充要條件的意義,掌握命題條件的充要性判斷及其證明方法;

2.教學(xué)難點:命題條件充要性的判斷及其證明。

多媒體

教學(xué)過程

落實核心素養(yǎng)目標(biāo)

一、情景引入,溫故知新

情景1:如圖所示電路中(整個電路及燈泡一切正常),

記p:閉合開關(guān)A, q:燈泡亮。

請把這個電路圖改寫為“若p,則q”形式的命題并判斷真假。

【答案】真命題

情景2:記p:x >2, q:x >0 。

判斷命題“若x >2 ,則 x >0”的真假。

【答案】真命題

二、探索新知

探究一 充分條件與必要條件的含義

1.思考:下列“若P,則q”形式的命題中,哪些是真命題?哪些是假命題?

(1)若平行四邊形的對角線互相垂直,則這個平行四邊形是菱形;

(2)若兩個三角形的周長相等,則這兩個三角形全等;

(3)若

(4)若平面內(nèi)兩條直線a和b均垂直于直線l,則a//b。

【答案】(1)真 (2)假 (3) 假 (4)真

2、歸納新知

(1)充分條件、必要條件的含義

一般地,用p、q分別表示兩個命題,如果命題p成立,可以推出命題q也成立,即,那么p叫做q的充分條件, p叫做q的必要條件.

P足以導(dǎo)致q,也就是說條件p充分了;

q是p成立所必須具備的前提.

(2)

3.思考:下列“若P,則q”形式的命題中,p是q的什么條件?

(1)若平行四邊形的對角線互相垂直,則這個平行四邊形是菱形;

(2)若兩個三角形的周長相等,則這兩個三角形全等;

(3)若

(4)若平面內(nèi)兩條直線a和b均垂直于直線l,則a//b。

【解析】(1)、(4)中,p是q的充分條件,q是p的必要條件;(2)、(3)中, p不是q的充分條件,q不是p的必要條件

【解析】(1)這是一條平行四邊形的判定定理,, 所以p是q的充分條件;

(2)這是一條相似三角形的判定定理,,所以p是q的充分條件;

(3)這是一條菱形的性質(zhì)定理,,所以p是q的充分條件;

(4)由于, 所以p不是q的充分條件。

(5)由等式的性質(zhì)知,,所以p是q的充分條件。

(6)為無理數(shù),但為有理數(shù),,所以p不是q的充分條件。

4、思考:例1中命題(1)給出了“四邊形是平行四邊形”的一個充分條件,這樣的充分條件唯一嗎?若不唯一,那么你能給出不同的充分條件嗎?

【解析】四邊形的兩組對邊分別相等,四邊形的一組對邊平行且相等,四邊形的兩條對角線互相平分都是其充分條件。

結(jié)論:一般地,數(shù)學(xué)中的每一條判定定理都給出了相應(yīng)數(shù)學(xué)結(jié)論成立的一個充分條件。

解:(1)這是一條平行四邊形的性質(zhì)定理,,所以q是p的必要條件;

(2)這是一條相似三角形的性質(zhì)定理,,所以q是p的必要條件;

(3)如圖,四邊形ABCD的對角線互相垂直,但它不是菱形,所以q不是p的必要條件;

(4)顯然, 所以q不是p的必要條件。

(5)由于 所以q不是p的必要條件;

(6)為無理數(shù),但1,不全是無理數(shù),,所以q不是p的必要條件。

思考:例2中命題(1)給出了“四邊形是平行四邊形”的一個必要條件,這樣的必要條件唯一嗎?若不唯一,你能給出幾個其它的必要條件嗎?

【解析】四邊形的兩組對邊分別相等,四邊形的一組對邊平行且相等,四邊形的兩條對角線互相平分都是其必要條件。

【結(jié)論】一般地,數(shù)學(xué)中的每一條性質(zhì)定理都給出了相應(yīng)數(shù)學(xué)結(jié)論成立的一個必要條件。

探究二 充要條件的含義

1.思考:下列“若P,則q”形式的命題中,哪些命題與它們的逆命題都是真命題?

(1)若兩個三角形的兩角和其中一角所對的邊分別相等,則這兩個三角形全等;

(2)若兩個三角形全等,則這兩個三角形的周長相等;

(3)若一元二次方程有兩個不相等的實數(shù)根,則。

(4)若是空集,則A與B均是空集。

【解析】命題(1)、(4)與它們的逆命題都是真命題。

2.定義:一般地,如果既有,又有,就記作:, 這時p既是q的充分條件,又是q的必要條件,則p是q的充分必要條件,簡稱充要條件。其中叫做等價符號。。

例3 下列各題中,哪些p是q的充要條件?

(1)p:四邊形是正方形,q:四邊形的對角線互相垂直且平分;

(2)P:兩個三角形相似,q:兩個三角形三邊成比例;

(3)p:xy>0,q:x>0,y>0;

(4) p:x=1是一元二次方程的一個根,q:。

解:(1)因為對角線互相垂直平分的四邊形不一定是正方形,所以,所以p不是q的充要條件。

(2)因為“若p,則q”是相似三角形的性質(zhì)定理,“若q,則p”是相似三角形的判定定理,所以它們均是真命題,即,所以P是q的充要條件。

(3)因為xy>0時,x>0,y>0不一定成立,所以 ,所以p不是q的充要條件。

(4)因為“若p,則q”與“若q,則p”均為真命題,即,

所以P是q的充要條件。

3.探究:通過上面的學(xué)習(xí),你能給出“四邊形是平行四邊形”的充要條件嗎?

【解析】四邊形的兩組對角分別相等、四邊形的兩組對邊分別相等、四邊形的一組對邊平行且相等、四邊形的對角線互相平分、四邊形的兩組對邊分別平行都是它的充要條件。

例4 已知:⊙O的半徑為r,圓心O到直線L的距離為d。求證:d=r是直線l與⊙O相切的充要條件。

解析:設(shè):,:直線與⊙O相切。要證是的充要條件,只需證明充分性()和必要性()即可。

解:教材P22

點評:在處理充分和必要條件問題時,首先應(yīng)分清條件和結(jié)論,然后才能進行推理和判斷。

通過初中所學(xué)及實例,讓學(xué)生感知、了解,進而概括出充分條件與必要條件的含義。提高學(xué)生用數(shù)學(xué)抽象的思維方式思考并解決問題的能力。

通過命題真假的判定,歸納出充分條件、必要條件的含義。

通過思考,進一步理解充分條件、必要條件的含義,教會學(xué)生解決和研究問題。

通過例題進一步鞏固充分條件的含義,提高學(xué)生解決問題的能力。

通過思考理解充分條件的不唯一。

通過例題進一步鞏固必要條件的含義,提高學(xué)生解決問題的能力。

通過思考理解必要條件的不唯一。

通過判斷命題及其逆命題的真假,概括歸納充要條件的定義,提高學(xué)生的抽象概括能力。

提高例題進一步鞏固充要條件。

通過思考理解充要條件的不唯一。

提高例題掌握充要條件的證明方法,提高學(xué)生解決問題的能力。去體驗知識方法。發(fā)現(xiàn)并提出數(shù)學(xué)問題,應(yīng)用數(shù)學(xué)語言予以表達。


最新課件教案文檔
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認(rèn)真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強的毅力。

  • 公司2024第一季度意識形態(tài)工作聯(lián)席會議總結(jié)

    公司2024第一季度意識形態(tài)工作聯(lián)席會議總結(jié)

    一是要把好正確導(dǎo)向。嚴(yán)格落實主體責(zé)任,逐條逐項細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實實在在的成效。更加深刻領(lǐng)會到******主義思想的科學(xué)體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領(lǐng),要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻。二是要加強應(yīng)急處事能力。認(rèn)真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預(yù)警和應(yīng)對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應(yīng)對。加強職工群眾熱點問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對。

  • 關(guān)于2024年上半年工作總結(jié)和下半年工作計劃

    關(guān)于2024年上半年工作總結(jié)和下半年工作計劃

    二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時間節(jié)點,科學(xué)分析研判意識形態(tài)領(lǐng)域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風(fēng)險隱患。積極響應(yīng)和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅強有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強高素質(zhì)專業(yè)化黨員隊伍管理。配齊配強支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺。

  • XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報告

    XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報告

    二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉(zhuǎn)型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實際情況,全面了解群眾的真實需求,解決相關(guān)問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺。目前,“民聲熱線”已回應(yīng)了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風(fēng)貌和活力。

  • 交通運輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進會上的匯報發(fā)言

    交通運輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進會上的匯報發(fā)言

    今年3月,市政府出臺《關(guān)于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準(zhǔn)二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結(jié)合“到一線去”專項行動,我們深入到諫壁閘一線,詳細(xì)了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計方案。牢牢把握高質(zhì)量發(fā)展這個首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責(zé)任,奮力推動交通運輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動高質(zhì)量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質(zhì)量發(fā)展要堅持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。

  • XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    三、2024年工作計劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標(biāo)任務(wù)按時保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機構(gòu)審批工作,結(jié)合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國家全域旅游示范區(qū)驗收標(biāo)準(zhǔn)》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認(rèn)真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強的毅力。

  • “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    (二)堅持問題導(dǎo)向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時代人民群眾對政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質(zhì)效整體提升。要面向社會和公眾莊嚴(yán)承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。

  • 2024年度工作計劃匯編(18篇)

    2024年度工作計劃匯編(18篇)

    1.市政基礎(chǔ)設(shè)施項目5項,總建設(shè)里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關(guān)工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學(xué)院配套道路項目在黃麓鎮(zhèn)完成圍墻建設(shè)后即可進場施工。2.公益性建設(shè)項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀(jì)新都小學(xué)擴建工程已完成施工、監(jiān)理招標(biāo)掛網(wǎng),2月上旬完成全部招標(biāo)工作;合肥職業(yè)技術(shù)學(xué)院大維修三期已完成招標(biāo)工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標(biāo)工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結(jié)合醫(yī)院)新建工程正在按照既定計劃推進,預(yù)計4月中下旬掛網(wǎng)招標(biāo)。

  • 駐村工作隊2024年第一季度工作總結(jié)匯編(4篇)

    駐村工作隊2024年第一季度工作總結(jié)匯編(4篇)

    三是做大做強海產(chǎn)品自主品牌。工作隊于xx年指導(dǎo)成立的冬松村海產(chǎn)品合作社,通過與消費幫扶平臺合作,在工作隊各派出單位、社會團體、個人支持下,已獲得逾xx萬元銷售額。2022年底工作隊推動合作社海產(chǎn)品加工點擴建的工作方案已獲批,待資金下?lián)芎髮⒄絾訑U建工作。四是積極助企紓困,帶動群眾增收致富。工作隊利用去年建立的xx鎮(zhèn)產(chǎn)業(yè)發(fā)展工作群,收集本地企業(yè)在產(chǎn)品銷售、技術(shù)、人力、資金、運營、用地等方面的需求,并加大xx支持鄉(xiāng)村振興力度,xx助理赴各村委開展多場xx政策支持鄉(xiāng)村振興宣講活動,本季度有x萬元助農(nóng)貸款獲批,xx萬貸款正在審批中。在壯大既有產(chǎn)業(yè)的同時,完善聯(lián)農(nóng)帶農(nóng)機制,一方面鼓勵企業(yè)雇用本地農(nóng)戶就業(yè),另一方面計劃與本地農(nóng)戶簽訂長期收購合同,讓農(nóng)民種得放心、種得安心,帶動當(dāng)?shù)厝罕姽餐赂弧?/p>

  • 主題教育總結(jié)常用提綱大全

    主題教育總結(jié)常用提綱大全

    第一,主題教育是一次思想作風(fēng)的深刻洗禮,初心傳統(tǒng)進一步得到回歸。第二,主題教育是一次沉疴積弊的集中清掃,突出問題進一步得到整治。第三,主題教育是一次強化為民服務(wù)的生動實踐,赤子之情進一步得到提振。第四,主題教育是一次激發(fā)創(chuàng)業(yè)擔(dān)當(dāng)?shù)挠欣鯔C,發(fā)展層次進一步得到提升。2.第一,必須提領(lǐng)思想、武裝思想。第二,必須聚焦問題、由表及里。第三,必須領(lǐng)導(dǎo)帶頭、以上率下。第四,必須務(wù)實求實、認(rèn)真較真。3.一是抬高政治站位,堅持大事大抓。二是堅持思想領(lǐng)先,狠抓學(xué)習(xí)教育。三是突出問題導(dǎo)向,深入整改糾治。四是堅持領(lǐng)導(dǎo)帶頭,發(fā)揮表率作用。4.一是立足“早”字抓籌劃。二是著眼“活”字抓學(xué)習(xí)。三是圍繞“統(tǒng)”字抓協(xié)調(diào)。5.一是形勢所需。二是任務(wù)所系。三是職責(zé)所在。四是制度所定。6.一要提升認(rèn)識。二要積極作為。三要密切協(xié)作。

  • 主題教育專題讀書班結(jié)班總結(jié)講話

    主題教育專題讀書班結(jié)班總結(jié)講話

    第二,要把調(diào)查研究貫穿始終,實干擔(dān)當(dāng)促進發(fā)展。開展好“察實情、出實招”“破難題、促發(fā)展”“辦實事、解民憂”專項行動,以強化理論學(xué)習(xí)指導(dǎo)發(fā)展實踐,以深化調(diào)查研究推動解決發(fā)展難題。領(lǐng)導(dǎo)班子成員要每人牽頭XX個課題開展調(diào)查研究,XX月底前召開調(diào)研成果交流會,集思廣益研究對策措施。各部門、各單位要制定調(diào)研計劃,通過座談訪談、問卷調(diào)查、統(tǒng)計分析等方式開展調(diào)查研究,解決工作實際問題,幫助基層單位和客戶解決實際困難。第三,要把檢視問題貫穿始終,廉潔奉公樹立新風(fēng)。認(rèn)真落實公司主題教育整改整治工作方案要求,堅持邊學(xué)習(xí)、邊對照、邊檢視、邊整改,對標(biāo)對表xxx新時代中國特色社會主義思想,深入查擺不足,系統(tǒng)梳理調(diào)查研究發(fā)現(xiàn)的問題、推動發(fā)展遇到的問題、群眾反映強烈的問題,結(jié)合巡視巡察、審計和內(nèi)外部監(jiān)督檢查發(fā)現(xiàn)的問題,形成問題清單。