師:從圖1到圖2,風車發(fā)生了怎樣的變化呢?下面請同學們小組合作,共同來解決報告單上提出的問題。(1)從圖1到圖2,風車繞點O逆時針旋轉了___度。(2)你是怎樣判斷風車旋轉的角度的?生小組討論。3.小組匯報(實物投影展示)(1)圖1到圖2,風車繞點O逆時針旋轉了90°;(2)組1,根據(jù)三角形變換的位置判斷風車旋轉的角度;(3)組2,根據(jù)對應的線段判斷風車旋轉的角度;(4)組3,根據(jù)對應的點判斷風車旋轉的角度。4.小結(教師邊做小結邊演示)師:通過觀察,我們發(fā)現(xiàn)風車旋轉后,不僅是每個三角形都繞點O逆時針旋轉了90°(閃爍),而且,每條線段(閃爍),每個頂點(閃爍),都繞點O逆時針旋轉了90°。5.揭示旋轉的特征和性質
(1)我們比較鉛筆的長度,可以說這支鉛筆長些、那只鉛筆短些;如果我們比較兩名同學的身高,應該怎么說?(引導學生說出“高矮”)(板書:高矮)(2)(請兩位身高相差較大的同學站起來)誰比較高?誰比較矮?(3)(請兩位身高相差不大的同學站起來)能不能一眼看出來,誰比較高,誰比較矮?你有什么方法可以比較出他們兩個誰比較高?(小組討論)(4)小組匯報(5)現(xiàn)在我們來玩一個排隊的游戲,四人小組按照從高到矮的順序排隊。(6)練習一 7、8、 4、小結:今天我們學了比較長短、比較高矮的方法。其實除了我們今天所說的方法之外,還有很多種方法,我希望同學們多動動腦筋,想出更多更好的方法。教學反思:在學習《長短、高矮》時,通過老師和學生、學生與學生比高矮,利用手邊的鉛筆、尺等來比長短,使學生理解長短、高矮是相比較而言的。這些事例是學生身邊的,學生看的見、有體驗、說的出來、易于理解的。因此,學生學起來容易,而且能夠正確的加以運用。
三、利用乘法口訣進行計算1.復習口訣的含義。任意挑出一句乘法口訣(兩個因數(shù)不同的),讓學生說說它表示什么意思。如"七八五十六",使學生知道它既表示8個7相加是56,又表示?個8相加是56。2.以游戲的方式開展用口訣進行計算的活動。(1)已知兩個因數(shù)求積的游戲。方法是:請一位學生隨意說出一個兩位數(shù),另一位學生則將這個兩位數(shù)的十位數(shù)字與個位數(shù)字相乘,并算出結果,如果結果又是一個兩位數(shù),再將這個兩位數(shù)的十位數(shù)字和個位數(shù)字相乘,直至結果是一位數(shù)或零。如,一位學生說:"79",另一位學生則口算:7X9=636X3=181X8=8;一位學生說:"58":另一位學生口算:5X8=404X0=0(告訴學生0和一個數(shù)相乘得零)一位學生報了3個數(shù)以后,互換角色進行。(2)已知積求兩個因數(shù)的游戲。
出示例6掛圖。教師試問:誰知道0.50元是幾角?2.00元是幾角?你是怎么知道?以元為單位小數(shù)點左邊是幾就是幾元,右邊第一位是幾就是幾角,右邊第二位是幾就是幾分。1.20元是1元2角。35.90元是35元9角。(這部分知識學生知道它表示幾元幾角就可以了,至于1.20元是個什么數(shù),怎么讀、寫不需要學生掌握)3、教學例7。(1) 課件演示例7第一小題。教師:0.5元是幾角?(5角)0.80元是幾角?(8角)學生回答。5角+8角是幾角?(5角+8角=13角教師板書)教師問:多少角是1元?13角里面拿出10角還剩多少角?(3角)所以13角等于1元3角。教師板書:5角+8角=13角=1元3角。(2)例7第二小題(課件演示,提出問題:我買這兩個氣球要多少錢)學生嘗試完成,然后提問:你是怎么想的?教師強調:元、角計算,只有在相同單位的情況下,才能相加。
整個實踐活動大體分為三部分,即發(fā)現(xiàn)問題,分析問題,解決問題。根據(jù)閱讀材料內容和調查結果分析數(shù)據(jù),提出解決問題的方案。發(fā)現(xiàn)問題的過程實際上是閱讀材料和進行調查的過程。這部分活動分為兩個層次:第一個層次是閱讀資料。資料中蘊涵著兩方面的信息,一是平時寄賀卡的行為消耗掉了大量的森林資源;另一方面,對廢紙的有效回收是解決問題的有效途徑之一。閱讀資料是整個實踐活動的基礎,也是第二層次的活動進行的原由。第二個層次是對個人和家庭去年收到賀卡情況的調查統(tǒng)計,這一層次是對第一層次活動的擴展和延伸,也是活動的細化和切入點。教材中列舉了第一小組的調查統(tǒng)計表,其中所涉及到的“總計”和“平均”兩個統(tǒng)計量,在后面的分析問題中有很重要的作用。分析問題的過程就是根據(jù)閱讀材料的內容和調查統(tǒng)計的結果分析數(shù)據(jù)的過程。這部分內容,貫穿了對統(tǒng)計結果和估算等數(shù)學知識的運用,需要學生綜合分析問題。
【教學過程】一、從實際情景入手,引入新知,使學生學會在具體情景中用數(shù)對確定位置1.談話引入。今天有這么多老師和我們一起上課,同學們歡迎嗎?老師們都很想認識你們。咱們先來給他們介紹一下我們班的班長,可以嗎?2.合作交流,在已有經(jīng)驗的基礎上探究新知。(1)出示要求:以小組為單位,想一想,可以用什么方法表示出班長的位置,把你的方法寫或畫在紙上。匯報:班長的位置在第4組的第三個,他在從右邊數(shù)第二組的第三排…哪個小組也用語言描述出了班長的位置?請班長起立,他們的描述準確嗎?剛才同學們的描述有什么相同和不同?(都表示的是班長的位置,有的同學說第幾組,第幾行,第幾排……)看來在日常生活中,我們可以用組、排、行、等多種方式,還可以從不同的方位來描述物體的位置。為了我們在確定位置的時候語言達成一致,一般規(guī)定:豎排叫列,橫排叫行。
1、結合具體生活場景,能運用所學的乘法口訣解決簡單的實際問題,通過圖與式的對應,進一步理解乘法的意義。 2、能熟練運用口訣進行計算,提高靈活運用口訣解決實際問題的能力。 3、體會數(shù)學與實際生活的聯(lián)系,培養(yǎng)用數(shù)學的意識,體驗口訣在解決問題中的作用。 運用所學乘法解決簡單的實際問題。 結合實際情景理解乘法的意義。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、談話導入:在前面的學習中,我們認識了乘法,而且還學習了2和5的乘法口訣。這節(jié)課,老師想請同學們用這些跟乘法有關的知識來幫助老師一起解決生活中遇到的問題,一起來看一看吧??鞓沸菹r間到了,學校的大操場突然熱鬧起來了,你們一定非常喜歡課件活動吧!看,操場上同學們有的在玩老鷹捉小雞的游戲,有的在進行乒乓球比賽,有的在跳繩,還有的在踢毽子……真熱鬧??!
教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉化。2. 會根據(jù)三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談談你的看法。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
教學反思: 1.本課時設計的主導思想是:將數(shù)形結合的思想滲透給學生,使學生對數(shù)與形有一個初步的認識.為將來的學習打下基礎,這節(jié)課是一堂起始課,它為學生的思維開拓了一個新的天地.在傳統(tǒng)的教學安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學生比較線段的方法,沒有從數(shù)形結合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內容.在教知識的同時,交給學生一種很重要的數(shù)學思想.這一點不容忽視,在日常的教學中要時時注意.2.學生在小學時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學生對圓規(guī)的用法有一個新的認識.3.在課堂練習中安排了度量一些三角形的邊的長度,目的是想通過度量使學生對“兩點之間線段最短”這一結論有一個感性的認識,并為下面的教學做一個鋪墊.
1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或實物原型.一、情境導入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側成峰,遠近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.
方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質解方程用等式的性質解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結論的嚴密性.
教學目標1、知識目標:掌握等式的性質;會運用等式的性質解簡單的一元一次方程。2、能力目標:通過觀察、探究、歸納、應用,培養(yǎng)學生觀察、分析、綜合、抽象能力,獲取學習數(shù)學的方法。3、情感目標:通過學生間的交流與合作,培養(yǎng)學生積極愉悅地參與數(shù)學學習活動的意識和情感,敢于面對數(shù)學活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學重點與難點重點:理解和應用等式的性質。難點:應用等式的性質,把簡單的一元一次方程化為“x=a”的形式。教學時數(shù) 2課時(本節(jié)課是第一課時)教學方法 多媒體教學教學過程(一) 創(chuàng)設情境,復習導入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學生不用筆算,只能估算)
先讓學生自己總結,然后互相交流,得出結論。解一元一次方程,一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉化”成x=a的形式。解題時,要靈活運用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質22、 去括號----去括號法則3、 移項----等式性質14、 合并同類項----合并同類項法則5、 系數(shù)化為1.----等式性質2【課堂練習】練習:解下列一元一次方程解方程: (2) ;思路點拔:(1)去分母所選的乘數(shù)應是所有分母的最小公倍數(shù),不應遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時,不要漏掉等號兩邊不含分母的項。(3)去掉分母后,分數(shù)線也同時去掉,分子上的多項式用括號括起來?;仡櫧庖陨戏匠痰娜^程,表示了一元一次方程解法的一般步驟,通過去分母—去括號—移項—合并同類項—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉化。
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
小明說:“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結:根據(jù)乘法分配律和去括號法則(括號前面是“+”號,把“+”號和括號去掉,括號內各項都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內各項都改變符號)去括號時要注意:1、 不要漏乘括號內的任何一項;2、若括號前面是“-”號,記住去括號后括號內各項都變號.習題訓練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡單的應用題,如課本P123練一練3或補充一些題,如含小括號、中括號、大括號的方程(這方面課本安排幾乎沒有,只限淺顯問題,教師不必深究)
1、突出問題的應用意識.教師首先用一個學生感興趣的實際問題引人課題,然后運用算術的方法給出解答。在各環(huán)節(jié)的安排上都設計成一個個的問題,使學生能圍繞問題展開思考、討論,進行學習.2、體現(xiàn)學生的主體意識.本設計中,教師始終把學生放在主體的地位:讓學生通過對列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術方法到代數(shù)方法是數(shù)學的進步;讓學生通過合作與交流,得出問題的不同解答方法;讓學生對一節(jié)課的學習內容、方法、注意點等進行歸納.3、體現(xiàn)學生思維的層次性.教師首先引導學生嘗試用算術方法解決間題,然后再逐步引導學生列出含未知數(shù)的式子,尋找相等關系列出方程.在尋找相等關系、設未知數(shù)及作業(yè)的布置等環(huán)節(jié)中,教師都注意了學生思維的層次性.4、滲透建模的思想.把實際間題中的數(shù)量關系用方程形式表示出來,就是建立一種數(shù)學模型,教師有意識地按設未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力.
四、做一做(實踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學做得比較標準。2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學生閱讀材料《晶體--自然界的多面體》,讓學生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學生探索的欲望。教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。2、再讓學生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結果記入書上的P128的表格。引導學生發(fā)現(xiàn)結論。3、(延伸):若隨意做一個多面體,看看是否還是那個結果。
學習目標:1、知識與技能(1)會用字母、運算符號表示簡單問題的規(guī)律,并能驗證所探索的規(guī)律。(2)能綜合所學知識解決實際問題和數(shù)學問題,發(fā)展學生應用數(shù)學的意識,培養(yǎng)學生的實踐能力和創(chuàng)新意識。2、過程與方法(1)經(jīng)歷探索數(shù)量關系,運用符號表示規(guī)律,通過驗算驗證規(guī)律的過程。(2)在解決問題的過程中體驗歸納、分析、猜想、抽象還有類比、轉化等思維方法,發(fā)展學生抽象思維能力,培養(yǎng)學生良好的思維品質。3、情感、態(tài)度與價值觀通過對實際問題中規(guī)律的探索,體驗“從特殊到一般、再到特殊”的辯證思想,激發(fā)學生的探究熱情和對數(shù)學的學習熱情。學習重點:探索實際問題中蘊涵的關系和規(guī)律。學習難點:用字母、運算符號表示一般規(guī)律。學習過程:一、創(chuàng)景引入活動:出示一張月歷,學生任意選出3×3方格框出的9個數(shù),并計算出這9個數(shù)的和,告訴老師,老師就可以說出你所選的是哪9個數(shù)。
(1)依照此規(guī)律,第20個圖形共有幾個五角星?(2)擺成第n個圖形需要幾個五角星?(3)擺成第2015個圖形需要幾個五角星?解析:通過觀察已知圖形可得:每個圖形都比其前一個圖形多3個五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個圖中,五角星有3個(3×1);第2個圖中,五角星有6個(3×2);第3個圖中,五角星有9個(3×3);第4個圖中,五角星有12個(3×4);∴第n個圖中有五角星3n個.∴第20個圖中五角星有3×20=60個.(2)擺成第n個圖形需要五角星3n個.(3)擺成第2015個圖形需要6045個五角星.方法總結:此題首先要結合圖形具體數(shù)出幾個值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個圖形需要3n個五角星.三、板書設計教學過程中,強調學生自主探索和合作交流,經(jīng)歷觀察、操作、驗證、歸納、分析、猜想、抽象、積累、類比、轉化等思維過程,從中獲得數(shù)學知識與技能,體驗教學活動的方法,同時升華學生的情感態(tài)度和價值觀.