1、掌握有理數(shù)混合運算法則,并能進行有理數(shù)的混合運算的計算。2、經(jīng)歷“二十四”點游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點]有理數(shù)混合運算法則。[教學(xué)難點]培養(yǎng)探索思 維方式。【教學(xué)過程】情境導(dǎo)入——有理數(shù)的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數(shù)混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學(xué)到)叫做第三級運算。注意:可以應(yīng)用運算律,適當(dāng)改變運算順序,使運算簡便.合作探究——
解:設(shè)正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標(biāo)為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標(biāo),然后運用待定系數(shù)法將兩點的橫、縱坐標(biāo)代入所設(shè)表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.
(4)從平均分看,兩隊的平均分相同,實力大體相當(dāng);從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識;通過解決實際問題,讓學(xué)生體會數(shù)學(xué)與生活的密切聯(lián)系.
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標(biāo)訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
朋友們都聽說了我們的神奇魔力,米老鼠也來請我們幫忙了,你們愿意幫他把墻修補好嗎?(幻燈11,同時請一名同學(xué)到臺前來親自動手粘一下)在我們的幫助下,米老鼠家缺了10塊磚的墻就被修補好了(幻燈12)七、拼圖大比賽。1、師:現(xiàn)在請同學(xué)們運用自己手中的所有材料,發(fā)揮你的想象,可以自己拼,也可以和組員合作拼出自己喜歡的圖形,比一比,看那些同學(xué)拼得又好又快,又有創(chuàng)意。 2、展示學(xué)生作品。學(xué)生自己評價或者互相評價。八、欣賞品評,知識延伸 師:同學(xué)們剛才拼的圖形非常漂亮,老師很喜歡。生活中有許多地方都需要優(yōu)美的圖形的裝飾,同學(xué)們也可以是一位小小設(shè)計師,設(shè)計出美麗的圖案,裝點生活,美化環(huán)境。(欣賞生活中的優(yōu)秀裝飾作品) 師:通過剛才的欣賞,你有什么想法?
小結(jié):分別沿正方形紙的兩組對邊做出的圓筒一樣長、也一樣粗,因為正方形的四條邊都相等。解決問題。課件出示:你能用幾種方法,數(shù)出下圖中小正方體的個數(shù)?方法一:可以從上往下數(shù)(或從下往上數(shù))第一層有2個,第二層有4個,第三層有6個,三層共有:2 + 4 + 6 = 12(個);方法二:也可以從左往右數(shù)(或從右往左數(shù))。第一排有4個,第二排有6個,第三排有2個,三排共有:4 + 6 + 2 = 12(個);方法三:還可以將最上面一層的2個移到第二層的右側(cè)。這樣,這堆木塊就變成了兩層,每層都有6個,共有6 + 6 = 12(個)。(四)全課總結(jié)這節(jié)課我們用長方體和正方體拼組了很多不同形狀的圖形。其實在我們的生活中,有很多物體的形狀都是由長方體和正方體拼組而成的,希望同學(xué)們課下留心觀察。(五)練習(xí)數(shù)一數(shù),下面的圖形由幾個正方體組成?
人民幣的簡單計算是在對人民幣的認識后,是人民幣的再進一步的認識。本節(jié)課的主要知識點主要有三個:一人民幣單位間的換算、二進行簡單的計算,三是知道商品價格的表示形式。同時通過這節(jié)課的學(xué)習(xí),逐漸培養(yǎng)交往和社會實踐能力,體會人民幣在社會生活商品交換中的作用。為了達成以上的一些目標(biāo)我是這樣設(shè)計這節(jié)課。一、從學(xué)生經(jīng)驗入手直接引入商品價格,在學(xué)生回憶商品價格的表示方法中,喚醒學(xué)生的思緒,使學(xué)生覺得在所學(xué)的知識與實際生活的聯(lián)系。讓學(xué)生體驗到數(shù)學(xué)與日常生活的密切聯(lián)系。二、在操作中完成進率的換算。進率的換算在教學(xué)是一個重點也是難點,為此我在教學(xué)上通過不同的的付錢方法,深刻體會,這樣的教學(xué)讓說不清的關(guān)系,在操作講解中得以內(nèi)化。學(xué)生學(xué)了也不易忘記。
教學(xué)目標(biāo): 1.理解、掌握梯形面積的計算公式,并能運用公式正確計算梯形的面積。2.發(fā)展學(xué)生空間觀念。培養(yǎng)抽象、概括和解決實際問題的能力。3.掌握“轉(zhuǎn)化”的思想和方法,進一步明白事物之間是相互聯(lián)系,可以轉(zhuǎn)化的。教學(xué)重點:理解、掌握梯形面積的計算公式。教學(xué)難點:理解梯形面積公式的推導(dǎo)過程。教學(xué)過程:1.導(dǎo)入新課(1)投影出示一個三角形,提問:這是一個三角形,怎樣求它的面積?三角形面積計算公式是怎樣推導(dǎo)得到的?學(xué)生回答后,指名學(xué)生操作演示轉(zhuǎn)化的方法。(2)展示臺出示梯形,讓學(xué)生說出它的上底、下底和各是多少厘米。(3)教師導(dǎo)語:我們已學(xué)會了用轉(zhuǎn)化的方法推導(dǎo)三角形面積的計算公式,那怎樣計算梯形的面積呢?這節(jié)課我們就來解決這個問題。(板書課題,梯形面積的計算)
一、認識射線和直線1.認識線段的特征。(下面的板書填在一個表里)出示線段(長4分米)。提問:誰來告訴大家,黑板上的圖形叫什么?(板書:線段)提問:線段要怎樣畫?(按學(xué)生的回答畫線段)。畫線段時,開始和結(jié)束都要注意什么?指出:線段是直的,有兩個端點。是有限長的,我們可以用直尺量出線段的長度。誰能來量一量黑板上的線段,告訴大家,它的長是多少。現(xiàn)在看老師再來畫一條5分米長的線段。2.認識射線。如果把線段的一端無限延長,(老師延長第二條線段)就得到一條射線。(板書:射線)把射線與線段比一比,它有什么特點?指出:射線也是直的,它只有一個端點。另一方?jīng)]有端點,可以無限地延長下去,是無限長的。直尺或三角尺可以畫出射線:先點一點,再沿著尺的一邊畫射線。請大家在練習(xí)本上畫一條射線。
師:從圖1到圖2,風(fēng)車發(fā)生了怎樣的變化呢?下面請同學(xué)們小組合作,共同來解決報告單上提出的問題。(1)從圖1到圖2,風(fēng)車繞點O逆時針旋轉(zhuǎn)了___度。(2)你是怎樣判斷風(fēng)車旋轉(zhuǎn)的角度的?生小組討論。3.小組匯報(實物投影展示)(1)圖1到圖2,風(fēng)車繞點O逆時針旋轉(zhuǎn)了90°;(2)組1,根據(jù)三角形變換的位置判斷風(fēng)車旋轉(zhuǎn)的角度;(3)組2,根據(jù)對應(yīng)的線段判斷風(fēng)車旋轉(zhuǎn)的角度;(4)組3,根據(jù)對應(yīng)的點判斷風(fēng)車旋轉(zhuǎn)的角度。4.小結(jié)(教師邊做小結(jié)邊演示)師:通過觀察,我們發(fā)現(xiàn)風(fēng)車旋轉(zhuǎn)后,不僅是每個三角形都繞點O逆時針旋轉(zhuǎn)了90°(閃爍),而且,每條線段(閃爍),每個頂點(閃爍),都繞點O逆時針旋轉(zhuǎn)了90°。5.揭示旋轉(zhuǎn)的特征和性質(zhì)
教學(xué)目標(biāo)1、通過觀察、操作,使學(xué)生體會所學(xué)平面圖形的特征,并能用自己的語言描述長方形、正方形的邊的特征。2、通過觀察、操作,使學(xué)生初步感知所學(xué)圖形之間的關(guān)系。3、通過數(shù)學(xué)活動,培養(yǎng)學(xué)生用數(shù)學(xué)進行交流、合作探究和創(chuàng)新的意識。教具、學(xué)具準(zhǔn)備 實物風(fēng)車、圖形卡片、剪刀、膠水教學(xué)過程一、創(chuàng)設(shè)情境,生成問題(課前播放《大風(fēng)車》主題曲)小朋友,喜歡剛才聽到的歌嗎?那是少兒頻道《大風(fēng)車》節(jié)目的主題曲。今天,老師不但給大家?guī)砹艘皇状箫L(fēng)車的歌,還帶來了一個漂亮的大風(fēng)車。(老師拿風(fēng)車并讓它轉(zhuǎn)起來)想玩嗎?不過大家得自己做,能行嗎?二、探索交流,解決問題1、觀察比較誰來說說做風(fēng)車都需要哪些材料?不錯,除了小棒、大頭針,還需要一張紙做風(fēng)車的風(fēng)葉,需要什么形狀的紙呢?你們說得很對,做風(fēng)車的風(fēng)葉要用一張正方形的紙(課件出示),正方形跟我們見過面了,是個老朋友了?;貞浺幌拢苏叫?,我們還學(xué)過哪些平面圖形?
出示例6掛圖。教師試問:誰知道0.50元是幾角?2.00元是幾角?你是怎么知道?以元為單位小數(shù)點左邊是幾就是幾元,右邊第一位是幾就是幾角,右邊第二位是幾就是幾分。1.20元是1元2角。35.90元是35元9角。(這部分知識學(xué)生知道它表示幾元幾角就可以了,至于1.20元是個什么數(shù),怎么讀、寫不需要學(xué)生掌握)3、教學(xué)例7。(1) 課件演示例7第一小題。教師:0.5元是幾角?(5角)0.80元是幾角?(8角)學(xué)生回答。5角+8角是幾角?(5角+8角=13角教師板書)教師問:多少角是1元?13角里面拿出10角還剩多少角?(3角)所以13角等于1元3角。教師板書:5角+8角=13角=1元3角。(2)例7第二小題(課件演示,提出問題:我買這兩個氣球要多少錢)學(xué)生嘗試完成,然后提問:你是怎么想的?教師強調(diào):元、角計算,只有在相同單位的情況下,才能相加。
【課中安排學(xué)唱《可愛的角》這首歌曲,旋律是學(xué)生熟悉并喜愛的,加上簡明扼要的歌詞和動作,提高了孩子們的興趣。】四、課堂活動(課件出示)1.辨角。用你火眼金睛找出哪些是角?哪些不是角?為什么?(練習(xí)八的第1題)【在學(xué)生對角建立起概念的前提下,讓學(xué)生做該練習(xí),從而加深了學(xué)生對角的認識,增強分析、判斷能力。這個練習(xí)可以叫它“跟隨”練習(xí),即剛學(xué)會一個新的概念,認識一個新的內(nèi)容之后,緊跟著的一個比較容易的以選擇和判斷為主的練習(xí)?!?.?dāng)?shù)角(練習(xí)八的第2題)。師:小馬看見小朋友們都認識了角,非常高興,看看天色不早了,趕緊趕路,跑了一會兒,看見圖形王國里面有許多圖形,但小馬不知道各有幾個角?小朋友們能幫助它數(shù)一數(shù)嗎?【這是一道“鞏固”練習(xí),讓學(xué)生將所學(xué)知識做一次運用,難度稍加大,但學(xué)生能做出來,并且能找到練習(xí)中的規(guī)律,能享受到一種成就感?!?/p>
師:剛才同學(xué)們用兩個完全相同的三角形拼出四邊形,用兩個不完全相同的三角形拼出一個任意的四邊形。用三個相同的三角形拼出了梯形,如果把各種類型的三角形放在一起來個快樂大比拼,你們行嗎?那好,請拿出準(zhǔn)備好的三角形拼一拼,看誰拼出的圖案最漂亮。生:展示(每個小組選一個代表到前面展示本組的作品,并說說作品中包含哪些圖形)4.知識生活秀:(4分鐘)(1)同學(xué)們都到喜歡有山有水的地方去玩,大自然是非常美麗的,所以我們要保護她,愛護花草樹木,做熱愛大自然的好孩子?,F(xiàn)在用你們手中的圖形貼在黑板上,集體繪制一幅大自然的圖畫。繪制后:看著這幅圖加上自己豐富的想象說一句話。(2)我們今天用的知識在數(shù)學(xué)中有一個名字叫做“密鋪”,在我們的生活中,動物的世界中很多地方用到了密鋪,想在就讓我們一起去看看吧,圖片欣賞。看來生活中處處有數(shù)學(xué)啊,在感受數(shù)學(xué)魅力的同時,我想知道本節(jié)課的內(nèi)容你們都學(xué)會了嗎?
教學(xué)目標(biāo):1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學(xué)重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實踐法一、實物觀察、空間想像觀察:請同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談?wù)勀愕目捶āM卣梗寒?dāng)你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護花草樹木是我們每個人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.