【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
從而為列方程找等量關系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個小組,為增強小組討論結果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學生自己設計表格為討論的得出起到輔助作用.2.相信學生并為學生提供充分展示自己的機會本節(jié)課的設計中,通過學生多次的動手操作活動,引導學生進行探索,使學生確實是在舊知識的基礎上探求新內容,探索的過程是沒有難度的任何學生都會動手操作,每個學生都有體會的過程,都有感悟的可能,這種形式讓學生切身去體驗問題的情景,從而進一步幫助學生理解比較復雜的問題,再把實際問題抽象成數學問題.3.注意改進的方面本節(jié)課由于構題新穎有趣,所以一開始就抓住了學生的求知欲望,課堂氣氛活躍,討論問題積極主動.但由于學生發(fā)表自己的想法較多,使得教學時間不能很好把握,導致課堂練習時間緊張,今后予以改進.
解:設截取圓鋼的長度為xmm.根據題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結:圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個為正,則另一個就用負表示.理解表中的正負號表示的含義,根據條件計算出每天的水位即可求解;(2)只要觀察星期日的水位是正負即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結:解此題的關鍵是分析題意列出算式,用的數學思想是轉化思想,即把實際問題轉化成數學問題.探究點二:有理數的加減混合運算在生活中的其他應用
A、B兩碼頭相距140km,一艘輪船在其間航行,順水航行用了7h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結:本題關鍵是找到各速度之間的關系,順速=靜速+水速,逆速=靜速-水速;再結合公式“路程=速度×時間”列方程組.三、板書設計“里程碑上的數”問題數字問題行程問題數學思想方法是數學學習的靈魂.教學中注意關注蘊含其中的數學思想方法(如化歸方法),介紹化歸思想及其運用,既可提高學生的學習興趣,開闊視野,同時也提高學生對數學思想的認識,提升解題能力.
提示:要學會在圖表中用含未知數的代數式表示出要分析的量;然后利用相等關系列方程。2.Flash動畫,情景再現.3.學法小結:(1)對較復雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設計意圖:生動的情景引入,意在激發(fā)學生的學習興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學法小結,著重強調分析方法,養(yǎng)成歸納小結的良好習慣。實際效果:動畫引入,使數字問題變的更有趣,確實有效地激發(fā)了學生的興趣,學生參與熱情很高;借助圖表分析,有效地克服了難點,學生基本都能借助圖表分析,在老師的引導下列出方程組。4.變式訓練師生共同研究下題:有一個三位數,現將最左邊的數字移到最右邊,則比原來的數?。矗担挥种傥粩底值模贡侗扔墒粩底趾蛡€位數字組成的兩位數?。?,試求原來的3位數.
答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF金360元購買隨身聽,再利用得到的90元返券,加上2元現金購買書包,共花現金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學習反思;(5分鐘,學生思考回答,不足的地方教師補充和強調。)
故直線l2對應的函數關系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標系內畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結:此題在待定系數法的應用上有所創(chuàng)新,并且把一次函數的圖象和三角形面積巧妙地結合起來,既考查了基本知識,又不局限于基本知識.三、板書設計利用二元一次方程組確定一次函數表達式的一般步驟:1.用含字母的系數設出一次函數的表達式:y=kx+b(k≠0);2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進而得到一次函數的表達式.通過教學,進一步理解方程與函數的聯系,體會知識之間的普遍聯系和知識之間的相互轉化.通過對本節(jié)課的探究,培養(yǎng)學生的觀察能力、識圖能力以及語言表達能力.
四.知識梳理談談用一元二次方程解決例1實際問題的方法。五、目標檢測設計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設計意圖】發(fā)現幾何圖形中隱蔽的相等關系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
解:設個位數字為x,則十位數字為14-x,兩數字之積為x(14-x),兩個數字交換位置后的新兩位數為10x+(14-x).根據題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數上的數字不可能是負數,所以x=-3應舍去.當x=8時,14-x=6.所以這個兩位數是68.方法總結:(1)數字排列問題常采用間接設未知數的方法求解.(2)注意數字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數字不能為0,而其他如分數、負數根不符合實際意義,必須舍去.三、板書設計幾何問題及數字問題幾何問題面積問題動點問題數字問題經歷分析具體問題中的數量關系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經歷探索過程,培養(yǎng)合作學習的意識.體會數學與實際生活的聯系,進一步感知方程的應用價值.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結:此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質,解題的關鍵是根據條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
(2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結:本題考查了平行四邊形的判定和性質,勾股定理,平行四邊形的面積,掌握定理是解題的關鍵.三、板書設計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質的綜合.本節(jié)課的教學主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學生進行合作交流.在解決有關平行四邊形的問題時,要根據其判定和性質綜合考慮,培養(yǎng)學生的邏輯思維能力.
解析:(1)根據題設條件,求出等量關系,列一元一次方程即可求解;(2)根據題設中的不等關系列出相應的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設計一元一次不等式與一次函數關系的實際應用分類討論思想、數形結合思想本課時結合生活中的實例組織學生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學生分析、解決問題的能力,從新課到練習都充分調動了學生的思考能力,為后面的學習打下基礎.
探究點二:用配方法解二次項系數為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結:用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數為1的一元二次方程的一般步驟:(1)移項,把方程的常數項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
探究點二:選用適當的方法解一元二次方程用適當的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數根.方法總結:解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數根.沒有特殊要求時,一般不用配方法.
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數問題,培養(yǎng)自己利用數學知識解答實際問題的能力.三、板書設計二次函數y=ax2+bx+c的圖象與性質1.二次函數y=ax2+bx+c的圖象與性質2.二次函數y=ax2+bx+c的應用
1.使學生掌握用描點法畫出函數y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經歷探索二次函數y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質的過程,理解二次函數y=ax2+bx+c的性質。用描點法畫出二次函數y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數y=ax2+bx+c(a≠0)的性質以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數y=-4(x-2)2+1圖象與函數y=-4x2的圖象有什么關系?(函數y=-4(x-2)2+1的圖象可以看成是將函數y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
一、教學目標1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數學結論的過程;通過畫圖、度量等操作,培養(yǎng)學生獲得數學猜想的經驗,激發(fā)學生探索知識的興趣,體驗數學活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習2就是通過讓學生聯想、類比全等三角形中SSA條件下三角形的不確定性,來達到加深理解判定方法2的條件的目的的.
∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結:對于生活中的應用題,首先要全面理解題意,然后根據實際問題的要求,確定用哪些數學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數,有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據題意,選擇合理的答案.經歷列方程解決實際問題的過程,體會一元二次方程是刻畫現實世界中數量關系的一個有效數學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數學應用意識和能力.